Does this effect have a name? If so, what is it?
Posted: Tue Jan 21, 2014 2:55 am
Consider this thought experiment, conducted in a toy universe.
You select tens of thousands of images of galaxies, and discard those in which two galaxies appear to be interacting or overlapping, and those in which the central galaxy appears to be 'edge-on' or highly inclined. You prepare images of the remaining galaxies so they are framed consistently: centroid in the center of the image, scale such that the galaxy appears to fill ~a quarter of the image, background ('sky') a consistent black, galaxy colors rendered consistently, and so on.
You then ask an awful lot of ordinary people ('classifiers') to look at the galaxies and classify them. You offer them just two choices, 'spiral' and 'elliptical'. There's a tutorial, and some practice images. You make sure the classifiers don't talk to one another, that they are not asked to classify any galaxy more than once, etc, etc, etc.
You have an automated 'classification collection and analysis' system, that no one can interfere with. The system outputs the total number of classifications, the fraction of those which are 'spiral', and the fraction of those which are 'elliptical'.
After your classification project has been going for a while, you check on the results for three galaxies, respectively A, B, and C below.
A -> <- A
B -> <- B
C -> <- C
You find, for each of the three, that the total number of classifications is 10, and that the spiral (elliptical) fractions are 1.0 (0.0), 0.0 (1.0), and 0.5 (0.5), respectively.
No surprises, right?
You keep on collecting classifications, and observe the following, as the number of classifications per galaxy rises:
* for C, the spiral fraction seems to go on a drunken walk; sometimes above 0.5, sometimes below, but tends towards a value that's not far off 0.5
* for A, the spiral fraction remains at 1.0, until - after N classifications - it drops below 1.0; it never returns to 1.0
* for B, the spiral fraction remains at 0.0, until - after M classifications - it rises above 0.0; it never returns to 0.0
After an initial unanimity, spiral (elliptical) fractions will eventually become overwhelming majorities; if a galaxy does not begin with a unanimous classification (assume 'initial' is ten classifications), it will never get one.
Is there a name for this? If so, what is it?
More questions later, but to close with just one: random accidents - classifiers 'clicking the wrong button' - can happen in this toy universe; this is one possible reason why unanimity disappears (and eventually it will affect every galaxy whose initial classification was unanimous). If this were the only cause, and if all classifiers made random mistakes at the same rate (over the very long term), would classifications for 'perfect' galaxies tend towards a fixed value? If so, what?
You select tens of thousands of images of galaxies, and discard those in which two galaxies appear to be interacting or overlapping, and those in which the central galaxy appears to be 'edge-on' or highly inclined. You prepare images of the remaining galaxies so they are framed consistently: centroid in the center of the image, scale such that the galaxy appears to fill ~a quarter of the image, background ('sky') a consistent black, galaxy colors rendered consistently, and so on.
You then ask an awful lot of ordinary people ('classifiers') to look at the galaxies and classify them. You offer them just two choices, 'spiral' and 'elliptical'. There's a tutorial, and some practice images. You make sure the classifiers don't talk to one another, that they are not asked to classify any galaxy more than once, etc, etc, etc.
You have an automated 'classification collection and analysis' system, that no one can interfere with. The system outputs the total number of classifications, the fraction of those which are 'spiral', and the fraction of those which are 'elliptical'.
After your classification project has been going for a while, you check on the results for three galaxies, respectively A, B, and C below.
A -> <- A
B -> <- B
C -> <- C
You find, for each of the three, that the total number of classifications is 10, and that the spiral (elliptical) fractions are 1.0 (0.0), 0.0 (1.0), and 0.5 (0.5), respectively.
No surprises, right?
You keep on collecting classifications, and observe the following, as the number of classifications per galaxy rises:
* for C, the spiral fraction seems to go on a drunken walk; sometimes above 0.5, sometimes below, but tends towards a value that's not far off 0.5
* for A, the spiral fraction remains at 1.0, until - after N classifications - it drops below 1.0; it never returns to 1.0
* for B, the spiral fraction remains at 0.0, until - after M classifications - it rises above 0.0; it never returns to 0.0
After an initial unanimity, spiral (elliptical) fractions will eventually become overwhelming majorities; if a galaxy does not begin with a unanimous classification (assume 'initial' is ten classifications), it will never get one.
Is there a name for this? If so, what is it?
More questions later, but to close with just one: random accidents - classifiers 'clicking the wrong button' - can happen in this toy universe; this is one possible reason why unanimity disappears (and eventually it will affect every galaxy whose initial classification was unanimous). If this were the only cause, and if all classifiers made random mistakes at the same rate (over the very long term), would classifications for 'perfect' galaxies tend towards a fixed value? If so, what?