Hello
Types of nebulae
Emission Nebulae
Emission nebulae are clouds of high temperature gas. The atoms in the cloud are energized by ultraviolet light from a nearby star and emit radiation as they fall back into lower energy states (in much the same way as a neon light). These nebulae are usually red because the predominant emission line of hydrogen happens to be red (other colors are produced by other atoms, but hydrogen is by far the most abundant). Emission nebulae are usually the sites of recent and ongoing star formation. (M 42 shown)
http://antwrp.gsfc.nasa.gov/apod/ap051119.html
Reflection Nebulae
Reflection nebulae are clouds of dust which are simply reflecting the light of a nearby star or stars. Reflection nebulae are also usually sites of star formation. They are usually blue because the scattering is more efficient for blue light. Reflection nebulae and emission nebulae are often seen together and are sometimes both referred to as diffuse nebulae. (NGC 7023 shown)
http://www.aao.gov.au/images/general/reflection.html
http://antwrp.gsfc.nasa.gov/apod/ap051124.html
Dark Nebulae
Dark nebulae are clouds of dust which are simply blocking the light from whatever is behind. They are physically very similar to reflection nebulae; they look different only because of the geometry of the light source, the cloud and the Earth. Dark nebulae are also often seen in conjunction with reflection and emission nebulae. A typical diffuse nebula is a few hundred light-years across. (NGC 2264 shown; see also the Horsehead Nebula)
http://www.aao.gov.au/images/general/dark_frames.html
Planetary Nebulae
Planetary nebulae are shells of gas thrown out by some stars near the end of their lives. Our Sun will probably produce a planetary nebula in about 5 billion years. They have nothing at all to do with planets; the terminology was invented because they often look a little like planets in small telescopes. A typical planetary nebula is less than one light-year across. (M 57 shown)
http://www.aao.gov.au/images/general/planetary.html
Supernova Remnants
Supernovae occur when a massive star ends its life in an amazing blaze of glory. For a few days a supernova emits as much energy as a whole galaxy. When it's all over, a large fraction of the star is blown into space as a supernova remnant. A typical supernova remnant is at most few light-years across. (M 1 shown)
http://www.aao.gov.au/images/general/supernova.html
--------------------------------------------------------------------------------
Harry : Smile and live another day.