http://en.wikipedia.org/wiki/VLTI wrote:
<<The Very Large Telescope (VLT) is a system of four separate optical telescopes (the Antu telescope, the Kueyen telescope, the Melipal telescope, and the Yepun telescope) organized in an array formation, built and operated by the European Southern Observatory (ESO) at the Paranal Observatory on Cerro Paranal, a 2,635 m high mountain in the Atacama desert in northern Chile. Each telescope has an 8.2 m aperture. The array is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. Working together in so-called interferometric mode, the telescopes can achieve an angular resolution of around 1 milliarcsecond, equivalent to the gap between the headlights of a car as observed from the same distance as between the Earth to the Moon.
The VLT consists of an arrangement of four large (8.2 meter diameter) telescopes, and optical elements which can combine them into an astronomical interferometer (VLTI) which is used to resolve small objects. The interferometer also includes a set of four 1.8 meter diameter movable telescopes dedicated to interferometric observations. The 8.2 meter telescopes have been named after some astronomical objects in the local Mapuche language: Antu (The Sun), Kueyen (The Moon), Melipal (The Southern Cross), and Yepun (Venus).
The VLT 8.2 meter telescopes was originally designed to be operated in three modes[2]:
* as a set of four independent telescopes (this is the primary mode of operation). With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion times fainter than what can be seen with the unaided eye.
* as a single large coherent interferometric instrument (the VLT Interferometer or VLTI), for extra resolution. This mode is occasionally used, only for observations of relatively bright sources with small angular extent.
* as a single large incoherent instrument, for extra light-gathering capacity. The instrumentation required to bring the light to a combined incoherent focus was not built. Recently, new instrumentation proposals have been put forward for making this observing mode available[3]. Multiple telescopes are sometimes independently pointed at the same object, either to increase the total light-gathering power, or to provide simultaneous observations with complementary instruments.
The VLTs are equipped with a large set of instruments permitting observations to be performed from the near-UV to the mid-IR (ie a large fraction of the light wavelengths accessible from the surface of the Earth), with the full range of techniques including high-resolution spectroscopy, multi-object spectroscopy, imaging, and high-resolution imaging. In particular, the VLT has several Adaptive optics systems, which at infrared wavelengths correct for the effects of the atmospheric turbulence, providing images almost as sharp as if the telescope were in space. In the near-IR, the Adaptive Optics images of the VLT are up to three times sharper than those of the Hubble Space Telescope, and the spectroscopic resolution is many times better than Hubble. The VLTs are noted for their high level of observing efficiency and automation.
The principal role of the main VLT telescopes is to operate as four independent telescopes. The interferometry (combining light from multiple telescopes) is used about 20 percent of the time for very high-resolution on bright objects e.g. Betelgeuse.
Additionally, the four 8.2 m telescopes are accompanied by four smaller Auxiliary Telescopes of 1.8 m each (two operational in 2005, the other two in 2006), which can be placed on different positions around the four big telescopes in order to provide better interferometric observations.
The VLT is operated by the European Southern Observatory.
In 2004, VLT telescopes produced some of the first infrared images of extrasolar planets GQ Lupi b and 2M1207b. Among the more recent discoveries is the discovery of the farthest gamma-ray burst and the evidence for a black hole at the centre of our Galaxy, the Milky Way. The VLT has also discovered the candidate farthest galaxy ever seen by humans, Abell 1835 IR1916.>>