Re: APOD: CMB Dipole: Speeding Through the... (2022 Apr 03)
Posted: Mon Apr 04, 2022 3:35 pm
Few people only really understand tidal phenomens.
APOD and General Astronomy Discussion Forum
https://asterisk.apod.com/
Yes, that makes it make a lot more sense. Or even better, just replace the Earth with a big globe of water!. The only shape that it could possibly form is an oblate spheroid. All the water certainly wouldn't run to the other side!Chris Peterson wrote: ↑Mon Apr 04, 2022 1:46 pmYou're ignoring the effect of Earth's own gravity on the oceans. Simplify the system. Replace the Earth with a big blob of Jello, held at a fixed distance from the Moon with a giant stick. What shape will that blob assume?johnnydeep wrote: ↑Mon Apr 04, 2022 1:30 pmThe same even if the moon and earth were not rotating or orbiting each other? That can't be right. If, for the sake of argument, there was a zero mass infinitely strong pole holding the earth and moon in position relative to each other, wouldn't all the oceans of the earth eventually migrate to the side closest to the moon?Chris Peterson wrote: ↑Sun Apr 03, 2022 9:16 pm
That's closer. It's actually pretty simple. The gravitational force on the Earth is stronger on the side closer to the Moon than on the other. Add the two force vectors, and you have a net force that pulls the ocean (and the solid Earth, as well) into an oblong shape. Nothing to do with centrifugal force. It would happen even if the Earth and Moon were stationary (assuming a mechanism to keep them from falling into each other).
The reason I chose Jello over water is because there's no obvious way to hold a sphere of water at a fixed distance from a tidal mass. So a gel works better for my example. But yes, a blob of water does the same thing if you can stop it from falling into the Moon.johnnydeep wrote: ↑Mon Apr 04, 2022 4:09 pmYes, that makes it make a lot more sense. Or even better, just replace the Earth with a big globe of water!. The only shape that it could possibly form is an oblate spheroid. All the water certainly wouldn't run to the other side! :-)Chris Peterson wrote: ↑Mon Apr 04, 2022 1:46 pmYou're ignoring the effect of Earth's own gravity on the oceans. Simplify the system. Replace the Earth with a big blob of Jello, held at a fixed distance from the Moon with a giant stick. What shape will that blob assume?johnnydeep wrote: ↑Mon Apr 04, 2022 1:30 pm
The same even if the moon and earth were not rotating or orbiting each other? That can't be right. If, for the sake of argument, there was a zero mass infinitely strong pole holding the earth and moon in position relative to each other, wouldn't all the oceans of the earth eventually migrate to the side closest to the moon?
And again, I still don't understand your different CMBs. Hmm, the CMB isn't just a thin shell, is it. It suffuses all space, right? In the sense that those first photons are flying around everywhere in all parts of the universe (and they're losing energy over time due to the expansion of space). And you'd see different photons, Doppler shifted differently, depending on where you happen to be and how you are moving relative to those photons. Is that what you mean?Chris Peterson wrote: ↑Mon Apr 04, 2022 1:44 pmAgain, an observer in our galaxy sees a different CMB than an observer in the Andromeda Galaxy, because we each have our own unique observable universes. Of course, as close as we are, they only differ very slightly, so they will appear very similar. But each of us still can see parts of the Universe forever hidden from the other.johnnydeep wrote: ↑Mon Apr 04, 2022 1:37 pmWhat do you mean by different CMBs? Let's use my hypothetical "pole" idea from my post above about the earth/moon/tides. Suppose an infinitely strong zero mass pole was holding the Milky Way and Andromeda (say) in fixed position relative to each other. Wouldn't an observer in each galaxy (discounting galaxy rotation, etc) see the CMB Doppler shifted the same amount in all directions? And if so, if one measured a zero shift, wouldn't the other also?Chris Peterson wrote: ↑Sun Apr 03, 2022 9:13 pm
Well, those two observers are seeing different CMBs, so that complicates things. And you need to be clear about what the two observers know about each other already.
I silently dispensed with the pole and just assumed it was orbiting normally just like the Earth does.Chris Peterson wrote: ↑Mon Apr 04, 2022 4:12 pmThe reason I chose Jello over water is because there's no obvious way to hold a sphere of water at a fixed distance from a tidal mass. So a gel works better for my example. But yes, a blob of water does the same thing if you can stop it from falling into the Moon.johnnydeep wrote: ↑Mon Apr 04, 2022 4:09 pmYes, that makes it make a lot more sense. Or even better, just replace the Earth with a big globe of water!. The only shape that it could possibly form is an oblate spheroid. All the water certainly wouldn't run to the other side!Chris Peterson wrote: ↑Mon Apr 04, 2022 1:46 pm
You're ignoring the effect of Earth's own gravity on the oceans. Simplify the system. Replace the Earth with a big blob of Jello, held at a fixed distance from the Moon with a giant stick. What shape will that blob assume?
Which is fine. I just wanted to remove the orbiting part to take any issue of centrifugal force out of things.johnnydeep wrote: ↑Mon Apr 04, 2022 4:20 pmI silently dispensed with the pole and just assumed it was orbiting normally just like the Earth does. :-)Chris Peterson wrote: ↑Mon Apr 04, 2022 4:12 pmThe reason I chose Jello over water is because there's no obvious way to hold a sphere of water at a fixed distance from a tidal mass. So a gel works better for my example. But yes, a blob of water does the same thing if you can stop it from falling into the Moon.johnnydeep wrote: ↑Mon Apr 04, 2022 4:09 pm
Yes, that makes it make a lot more sense. Or even better, just replace the Earth with a big globe of water!. The only shape that it could possibly form is an oblate spheroid. All the water certainly wouldn't run to the other side! :-)
The CMB is defined by photons that have been in flight for 13.6 billion years. We see their origin in a shell around us.johnnydeep wrote: ↑Mon Apr 04, 2022 4:18 pmAnd again, I still don't understand your different CMBs. Hmm, the CMB isn't just a thin shell, is it. It suffuses all space, right? In the sense that those first photons are flying around everywhere in all parts of the universe (and they're losing energy over time due to the expansion of space). And you'd see different photons, Doppler shifted differently, depending on where you happen to be and how you are moving relative to those photons. Is that what you mean?Chris Peterson wrote: ↑Mon Apr 04, 2022 1:44 pmAgain, an observer in our galaxy sees a different CMB than an observer in the Andromeda Galaxy, because we each have our own unique observable universes. Of course, as close as we are, they only differ very slightly, so they will appear very similar. But each of us still can see parts of the Universe forever hidden from the other.johnnydeep wrote: ↑Mon Apr 04, 2022 1:37 pm
What do you mean by different CMBs? Let's use my hypothetical "pole" idea from my post above about the earth/moon/tides. Suppose an infinitely strong zero mass pole was holding the Milky Way and Andromeda (say) in fixed position relative to each other. Wouldn't an observer in each galaxy (discounting galaxy rotation, etc) see the CMB Doppler shifted the same amount in all directions? And if so, if one measured a zero shift, wouldn't the other also?
But our observable universe is moving with respect to the CMB?Chris Peterson wrote: ↑Mon Apr 04, 2022 4:28 pmThe CMB is defined by photons that have been in flight for 13.6 billion years. We see their origin in a shell around us.johnnydeep wrote: ↑Mon Apr 04, 2022 4:18 pmAnd again, I still don't understand your different CMBs. Hmm, the CMB isn't just a thin shell, is it. It suffuses all space, right? In the sense that those first photons are flying around everywhere in all parts of the universe (and they're losing energy over time due to the expansion of space). And you'd see different photons, Doppler shifted differently, depending on where you happen to be and how you are moving relative to those photons. Is that what you mean?Chris Peterson wrote: ↑Mon Apr 04, 2022 1:44 pm
Again, an observer in our galaxy sees a different CMB than an observer in the Andromeda Galaxy, because we each have our own unique observable universes. Of course, as close as we are, they only differ very slightly, so they will appear very similar. But each of us still can see parts of the Universe forever hidden from the other.
No. The CMB represents the most distant edge of the observable universe we are able to see in electromagnetic radiation.Ann wrote: ↑Mon Apr 04, 2022 5:17 pmBut our observable universe is moving with respect to the CMB?Chris Peterson wrote: ↑Mon Apr 04, 2022 4:28 pmThe CMB is defined by photons that have been in flight for 13.6 billion years. We see their origin in a shell around us.johnnydeep wrote: ↑Mon Apr 04, 2022 4:18 pm
And again, I still don't understand your different CMBs. Hmm, the CMB isn't just a thin shell, is it. It suffuses all space, right? In the sense that those first photons are flying around everywhere in all parts of the universe (and they're losing energy over time due to the expansion of space). And you'd see different photons, Doppler shifted differently, depending on where you happen to be and how you are moving relative to those photons. Is that what you mean?
Right?
Ann
That would be one possibility. Gravitational radiation is another.Iksarfighter wrote: ↑Mon Apr 04, 2022 5:33 pm Maybe some day advanced neutrino detector be able to see past these 13.6 billion years ?
Oh yes ! Thx for info.Chris Peterson wrote: ↑Mon Apr 04, 2022 5:35 pmThat would be one possibility. Gravitational radiation is another.Iksarfighter wrote: ↑Mon Apr 04, 2022 5:33 pm Maybe some day advanced neutrino detector be able to see past these 13.6 billion years ?
Of course, the actual edge of the observable universe is just 380,000 light years beyond the currently visible edge. Not very far, but lots of interesting stuff happened in that short period.Iksarfighter wrote: ↑Mon Apr 04, 2022 5:38 pmOh yes ! Thx for info.Chris Peterson wrote: ↑Mon Apr 04, 2022 5:35 pmThat would be one possibility. Gravitational radiation is another.Iksarfighter wrote: ↑Mon Apr 04, 2022 5:33 pm Maybe some day advanced neutrino detector be able to see past these 13.6 billion years ?
How would those photons be different if they had been in flight for 20 billion years?Chris Peterson wrote: ↑Mon Apr 04, 2022 4:28 pm The CMB is defined by photons that have been in flight for 13.6 billion years. We see their origin in a shell around us.
How could they have been in flight for greater than the age of the Universe? If the redshift led to that conclusion, we'd revise the age of the Universe.MarkBour wrote: ↑Tue Apr 05, 2022 7:19 pmHow would those photons be different if they had been in flight for 20 billion years?Chris Peterson wrote: ↑Mon Apr 04, 2022 4:28 pm The CMB is defined by photons that have been in flight for 13.6 billion years. We see their origin in a shell around us.
I think I'm questioning how rational the current interpretation of high-redshift data is.Chris Peterson wrote: ↑Tue Apr 05, 2022 7:32 pmHow could they have been in flight for greater than the age of the Universe? If the redshift led to that conclusion, we'd revise the age of the Universe.MarkBour wrote: ↑Tue Apr 05, 2022 7:19 pmHow would those photons be different if they had been in flight for 20 billion years?Chris Peterson wrote: ↑Mon Apr 04, 2022 4:28 pm The CMB is defined by photons that have been in flight for 13.6 billion years. We see their origin in a shell around us.
Code: Select all
Light travel
Name Redshift (z) distance (Gly) Type Notes
---------------------- ------------- -------------- --------------- --------------------------------
HD1 z = 13.27 13.5 Galaxy Formulative understanding
GN-z11 z = 11.09 13.39 Galaxy Confirmed galaxy
MACS1149-JD1 z = 9.11 13.26 Galaxy Confirmed galaxy
EGSY8p7 z = 8.68 13.23 Galaxy Confirmed galaxy
A2744 YD4 z = 8.38 13.20 Galaxy Confirmed galaxy
MACS0416 Y1 z = 8.31 13.20 Galaxy Confirmed galaxy
GRB 090423 z = 8.2 13.18 Gamma-ray burst
EGS-zs8-1 z = 7.73 13.13 Galaxy Confirmed galaxy
z7 GSD 3811 z = 7.66 13.11 Galaxy Galaxy
J0313-1806 z = 7.64 Quasar
z8 GND 5296 z = 7.51 13.10 Galaxy Confirmed galaxy
A1689-zD1 z = 7.5 13.10 Galaxy Galaxy
GS2_1406 z = 7.452 13.095 Galaxy Galaxy
SXDF-NB1006-2 z = 7.215 13.07 Galaxy Galaxy
GN-108036 z = 7.213 13.07 Galaxy Galaxy
BDF-3299 z = 7.109 13.05 Galaxy
ULAS J1120+0641 z = 7.085 13.05 Quasar
A1703 zD6 z = 7.045 13.04 Galaxy
BDF-521 z = 7.008 13.04 Galaxy
G2-1408 z = 6.972 13.03 Galaxy
IOK-1 z = 6.964 13.03 Galaxy Lyman-alpha emitter
LAE J095950.99+021219.1 z = 6.944 13.03 Galaxy Lyman-alpha emitter — Faint galaxy
If all of this should come to pass, I would then say that they're kind of stuck in their paradigm, unable to see beyond it (I meant that metaphorically, but it works literally, too).Oh, z=<r>? That's just a little older than z=13. We'll calculate it at about 13.6 billion years.
Ummm . . . But we're surprised to find an apparently complex galaxy at such an early date after the big bang. We'll have to revise some of our numbers about the big bang a little. Or maybe we'll have to change our description of the cosmic inflation epoch to handle this.
Very rational. It hangs on all of the underlying theory of the lambda-CDM model, which is itself very well supported by multiple independent lines of evidence. There are a few parameters which remain uncertain, such as the actual geometry of the Universe (assumed to be flat, but possibly not) and the exact current value of the Hubble constant (which is not constant with time). The redshift calculation is based on how the model has the Hubble constant changing. But the parameters are sufficiently well known now that the relationship between redshift and light travel time is reasonably accurate. Changing the parameters within their error space isn't going to radically change the relationship.
Sure. Redshift is created by the expansion of the Universe, and the current expansion rate (and certainly that for many billions of years into the future) is known with a low error. So it's a simple calculation to determine how much redshift a photon will experience over the next 7 billion years of travel time.The question I would like to ask, is:
Okay, we just saw a photon from a galaxy that astronomers say travelled for 13 billion years and landed in our telescope. A little ways away from it, another photon from the same source happened to miss our telescope. Let that photon continue to fly through space for another 7 billion years. What will be its redshift then? Can anyone answer this?
I agree. ;-)Of course at this point I'm way out on a limb and the likelihood that I'm right in these assertions is very low.
Yes, I can answer that. You've picked an interesting redshift example. Viewing z = 7 (now) won't change much over 7 Gyr. The cosmic acceleration causes redshift minima to occur at different times, i.e. minima times are dependent on z. Several years ago, I had a sudden interest in redshift evolution over time for a fixed observer (e.g. the milky way). It culminated in the plot below. I find it very interesting as it reveals characteristics I wasn't expecting. I won't elaborate any further now, and although I can calculate your specific example, I interpolated between the closest two curves for this post.MarkBour wrote: ↑Fri Apr 08, 2022 4:39 pmI think I'm questioning how rational the current interpretation of high-redshift data is.Chris Peterson wrote: ↑Tue Apr 05, 2022 7:32 pmHow could they have been in flight for greater than the age of the Universe? If the redshift led to that conclusion, we'd revise the age of the Universe.
If I look at this article: https://en.wikipedia.org/wiki/List_of_t ... al_objects
I see the following table:Starting at the bottom, a z of around 7 is interpreted as light from 13 billion years ago.Code: Select all
Light travel Name Redshift (z) distance (Gly) Type Notes ---------------------- ------------- -------------- --------------- -------------------------------- HD1 z = 13.27 13.5 Galaxy Formulative understanding GN-z11 z = 11.09 13.39 Galaxy Confirmed galaxy MACS1149-JD1 z = 9.11 13.26 Galaxy Confirmed galaxy EGSY8p7 z = 8.68 13.23 Galaxy Confirmed galaxy A2744 YD4 z = 8.38 13.20 Galaxy Confirmed galaxy MACS0416 Y1 z = 8.31 13.20 Galaxy Confirmed galaxy GRB 090423 z = 8.2 13.18 Gamma-ray burst EGS-zs8-1 z = 7.73 13.13 Galaxy Confirmed galaxy z7 GSD 3811 z = 7.66 13.11 Galaxy Galaxy J0313-1806 z = 7.64 Quasar z8 GND 5296 z = 7.51 13.10 Galaxy Confirmed galaxy A1689-zD1 z = 7.5 13.10 Galaxy Galaxy GS2_1406 z = 7.452 13.095 Galaxy Galaxy SXDF-NB1006-2 z = 7.215 13.07 Galaxy Galaxy GN-108036 z = 7.213 13.07 Galaxy Galaxy BDF-3299 z = 7.109 13.05 Galaxy ULAS J1120+0641 z = 7.085 13.05 Quasar A1703 zD6 z = 7.045 13.04 Galaxy BDF-521 z = 7.008 13.04 Galaxy G2-1408 z = 6.972 13.03 Galaxy IOK-1 z = 6.964 13.03 Galaxy Lyman-alpha emitter LAE J095950.99+021219.1 z = 6.944 13.03 Galaxy Lyman-alpha emitter — Faint galaxy
Moving to the top, it is quite non-linear, and we're up to the latest discoveries with z=11 and z=13 that are interpreted as light traveling just a "little" longer, 13.2 and 13.5 billion years.
~~~~~~~~~~
...
The question I would like to ask, is:
Okay, we just saw a photon from a galaxy that astronomers say travelled for 13 billion years and landed in our telescope. A little ways away from it, another photon from the same source happened to miss our telescope. Let that photon continue to fly through space for another 7 billion years. What will be its redshift then? Can anyone answer this?
I'm so impressed!alter-ego wrote: ↑Sat Apr 09, 2022 2:48 amYes, I can answer that. You've picked an interesting redshift example. Viewing z = 7 (now) won't change much over 7 Gyr. The cosmic acceleration causes redshift minima to occur at different times, i.e. minima times are dependent on z. Several years ago, I had a sudden interest in redshift evolution over time for a fixed observer (e.g. the milky way). It culminated in the plot below. I find it very interesting as it reveals characteristics I wasn't expecting. I won't elaborate any further now, and although I can calculate your specific example, I interpolated between the closest two curves for this post.MarkBour wrote: ↑Fri Apr 08, 2022 4:39 pmI think I'm questioning how rational the current interpretation of high-redshift data is.Chris Peterson wrote: ↑Tue Apr 05, 2022 7:32 pm
How could they have been in flight for greater than the age of the Universe? If the redshift led to that conclusion, we'd revise the age of the Universe.
If I look at this article: https://en.wikipedia.org/wiki/List_of_t ... al_objects
I see the following table:Starting at the bottom, a z of around 7 is interpreted as light from 13 billion years ago.Code: Select all
Light travel Name Redshift (z) distance (Gly) Type Notes ---------------------- ------------- -------------- --------------- -------------------------------- HD1 z = 13.27 13.5 Galaxy Formulative understanding GN-z11 z = 11.09 13.39 Galaxy Confirmed galaxy MACS1149-JD1 z = 9.11 13.26 Galaxy Confirmed galaxy EGSY8p7 z = 8.68 13.23 Galaxy Confirmed galaxy A2744 YD4 z = 8.38 13.20 Galaxy Confirmed galaxy MACS0416 Y1 z = 8.31 13.20 Galaxy Confirmed galaxy GRB 090423 z = 8.2 13.18 Gamma-ray burst EGS-zs8-1 z = 7.73 13.13 Galaxy Confirmed galaxy z7 GSD 3811 z = 7.66 13.11 Galaxy Galaxy J0313-1806 z = 7.64 Quasar z8 GND 5296 z = 7.51 13.10 Galaxy Confirmed galaxy A1689-zD1 z = 7.5 13.10 Galaxy Galaxy GS2_1406 z = 7.452 13.095 Galaxy Galaxy SXDF-NB1006-2 z = 7.215 13.07 Galaxy Galaxy GN-108036 z = 7.213 13.07 Galaxy Galaxy BDF-3299 z = 7.109 13.05 Galaxy ULAS J1120+0641 z = 7.085 13.05 Quasar A1703 zD6 z = 7.045 13.04 Galaxy BDF-521 z = 7.008 13.04 Galaxy G2-1408 z = 6.972 13.03 Galaxy IOK-1 z = 6.964 13.03 Galaxy Lyman-alpha emitter LAE J095950.99+021219.1 z = 6.944 13.03 Galaxy Lyman-alpha emitter — Faint galaxy
Moving to the top, it is quite non-linear, and we're up to the latest discoveries with z=11 and z=13 that are interpreted as light traveling just a "little" longer, 13.2 and 13.5 billion years.
~~~~~~~~~~
...
The question I would like to ask, is:
Okay, we just saw a photon from a galaxy that astronomers say travelled for 13 billion years and landed in our telescope. A little ways away from it, another photon from the same source happened to miss our telescope. Let that photon continue to fly through space for another 7 billion years. What will be its redshift then? Can anyone answer this?
Assuming you're adding 7 Gyr to present time, the answer is still close to 7. Note, dz/dt depends on when the first observation is made.
The two vertical lines mark now (13.72 Gyr) and +7Gyr (20.72 Gyr). The big arrows point to the two redshifts.
These calculations assume a flat spacetime. Also note, the evolution of the CMB redshift is plotted. It is the first electromagnetic radiation to fill the Universe. It was emitted roughly 380,000 years after the Big Bang, and therefore it's redshift (z ≈1100) cannot be exceeded by any visible object.
I'm expecting Webb to make discoveries pertinent to the onset and duration of the Dark Ages. I think the current thought is the first stars formed around 100 Myr after the BB (z~30)
Isn't it the exact opposite? That is, since the expansion rate of the universe is increasing everywhere, so will the values of redshift over time. Or, stated another way: we have to wait less now for the wavelength of traveling light to increase by the same factor it did before.I think I "understand" - well, "expect" is a better word - the fact that the redshift will be much the same 7 billion years from now as it is today, because the redshift really increases "almost exponentially" the closer we get to the Big Bang, but from then it just keeps slowing down.
First, to clarify, you should consider the plotted redshifts are for single observer at different observation times. Anywhere in our galaxy can be a fine observation location. The horizontal axis is the observation time as measured from the BB. The first observation is now, and the second observation is 7 Gyr later. As you know, current ΛCDM model uses lambda (Λ) Einstein's cosmological constant as the parameter to model cosmic expansion.johnnydeep wrote: ↑Sat Apr 09, 2022 7:17 pm Ann wrote above:
Isn't it the exact opposite? That is, since the expansion rate of the universe is increasing everywhere, so will the values of redshift over time. Or, stated another way: we have to wait less now for the wavelength of traveling light to increase by the same factor it did before.I think I "understand" - well, "expect" is a better word - the fact that the redshift will be much the same 7 billion years from now as it is today, because the redshift really increases "almost exponentially" the closer we get to the Big Bang, but from then it just keeps slowing down.
But maybe I'm totally missing what the redshift value is measuring (despite reading and not entirely understanding) alter-ego's post above).
I'm still trying to digest alter-ego's posts - which are giving me heartburn - but inflation happened long before the universe became transparent to radiation (at about 380000 years). From Wikipedia:Ann wrote: ↑Sun Apr 10, 2022 9:28 am Maybe I get a little bit of what you are saying, alter-ego.
Evolution of the Universe Shutterstock.png
If I get you correctly, the reason why the redshift increases so enormously the closer we get to the Big Bang is that the Universe underwent this incredible exponential growth spurt called inflation, and when that epoch was over the Universe was "braking hard". Instead of increasing exponentially in size "indefinitely" (wonder what that would have led to?) the Universe settled down, expanding very moderately.
During the epoch of inflation (and, in fact, during the epoch of "braking hard" after the inflation), the redshift changed dramatically, simply because of how much the actual growth of the Universe changed in a short time.
We are now in an epoch of acceleration. However, the acceleration has not "picked up speed" yet, and it has not yet affected the size of the Universe very much. Therefore, we are located in a "redshift valley", where the redshift stays relatively constant over billions of light-years.
Is that correct?
Ann
And a little later:https://en.wikipedia.org/wiki/Big_Bang#Inflation_and_baryogenesis wrote:Inflation stopped at around the 10−33 to 10−32 seconds mark, with the universe's volume having increased by a factor of at least 1078.
I would think that T=0 for all redshift calculations starts at the "recombination" mark at 379000 years. Or I supposed it would actually be at the "decoupling" mark "shortly afterward". Again from Wikipedia:As the universe cooled, the rest energy density of matter came to gravitationally dominate that of the photon radiation. After about 379,000 years, the electrons and nuclei combined into atoms (mostly hydrogen), which were able to emit radiation. This relic radiation, which continued through space largely unimpeded, is known as the cosmic microwave background.[36]
https://en.wikipedia.org/wiki/Cosmic_microwave_background wrote:Cosmologists refer to the time period when neutral atoms first formed as the recombination epoch, and the event shortly afterwards when photons started to travel freely through space is referred to as photon decoupling. The photons that existed at the time of photon decoupling have been propagating ever since, though growing less energetic, since the expansion of space causes their wavelength to increase over time (and wavelength is inversely proportional to energy according to Planck's relation). This is the source of the alternative term relic radiation. The surface of last scattering refers to the set of points in space at the right distance from us so that we are now receiving photons originally emitted from those points at the time of photon decoupling.
Great. I'd love nothing better than to learn more about the ΛCDM model and how, from the sequence of observations and thought, this model came to be the dominant accepted theory. Watching YouTube videos by physics popularizers hasn't gotten me anywhere in this regard. I've also read a few books, aimed at the layman, that got into these topics, and have just found myself repeating over and over again: "Why do you think that?"Chris Peterson wrote: ↑Fri Apr 08, 2022 9:06 pmVery rational. It hangs on all of the underlying theory of the lambda-CDM model, which is itself very well supported by multiple independent lines of evidence.
. . .
----------------------------------Excerpt from: https://en.wikipedia.org/wiki/Lambda-CDM_model
Unfalsifiability
It has been argued that the ΛCDM model is built upon a foundation of conventionalist stratagems, rendering it unfalsifiable in the sense defined by Karl Popper.[77]
Right on, Ann! Please let me attend that session, too ...Ann wrote: ↑Sat Apr 09, 2022 4:21 am...alter-ego wrote: ↑Sat Apr 09, 2022 2:48 amYes, I can answer that. You've picked an interesting redshift example. Viewing z = 7 (now) won't change much over 7 Gyr. The cosmic acceleration causes redshift minima to occur at different times, i.e. minima times are dependent on z. Several years ago, I had a sudden interest in redshift evolution over time for a fixed observer (e.g. the milky way). It culminated in the plot below. I find it very interesting as it reveals characteristics I wasn't expecting. I won't elaborate any further now, and although I can calculate your specific example, I interpolated between the closest two curves for this post.MarkBour wrote: ↑Fri Apr 08, 2022 4:39 pm ...
The question I would like to ask, is:
Okay, we just saw a photon from a galaxy that astronomers say travelled for 13 billion years and landed in our telescope. A little ways away from it, another photon from the same source happened to miss our telescope. Let that photon continue to fly through space for another 7 billion years. What will be its redshift then? Can anyone answer this?
Assuming you're adding 7 Gyr to present time, the answer is still close to 7. Note, dz/dt depends on when the first observation is made.
The two vertical lines mark now (13.72 Gyr) and +7Gyr (20.72 Gyr). The big arrows point to the two redshifts.
These calculations assume a flat spacetime. Also note, the evolution of the CMB redshift is plotted. It is the first electromagnetic radiation to fill the Universe. It was emitted roughly 380,000 years after the Big Bang, and therefore it's redshift (z ≈1100) cannot be exceeded by any visible object.
I'm expecting Webb to make discoveries pertinent to the onset and duration of the Dark Ages. I think the current thought is the first stars formed around 100 Myr after the BB (z~30)
(image not replotted)
Alter-ego, I wish you could sit down with me and give me the sort of information about your chart that a math idiot's brain can process.
...
Ann