Re: APOD: A Flight through the Hubble Ultra... (2020 Jul 26)
Posted: Mon Jul 27, 2020 5:12 pm
One gigantic tease.We may never reach the nearest star! What a majestic twisted trick we have been played.
APOD and General Astronomy Discussion Forum
https://asterisk.apod.com/
johnnydeep wrote: ↑Mon Jul 27, 2020 3:46 pmI think that's too fast. Warp 250000 would be 15.625e15 (15.625 quadrillion) times the speed light. That's a light year in about 2.02 nanoseconds, or a Gly in 2 seconds, or 27 secs to cover 13.8 Gly. Since the length of the video is 58 seconds, we'd only need to go about half the effective speed of warp 250000, which, by the magic of cubes is "only" about warp 198000
https://en.wikipedia.org/wiki/Observable_universe wrote:
<<The observable universe is a spherical region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time. According to calculations, the current comoving—proper distance, which takes into account that the universe has expanded since the light was emitted—to particles from which the cosmic microwave background radiation (CMBR) was emitted, which represents the radius of the visible universe, is about 45.7 billion light-years, while the comoving distance to the edge of the observable universe is about 46.6 billion light-years, about 2% larger. The radius of the observable universe is therefore estimated to be about 46.5 billion light-years.
As the universe's expansion is accelerating, all currently observable objects will eventually appear to freeze in time, while emitting progressively redder and fainter light. For instance, objects with the current redshift z from 5 to 10 will remain observable for no more than 4–6 billion years. In addition, light emitted by objects currently situated beyond a certain comoving distance (currently about 19 billion parsecs) will never reach Earth.>>
Poorly written at best, just plain wrong at worst.https://en.wikipedia.org/wiki/Observable_universe wrote: ...
As the universe's expansion is accelerating, all currently observable objects will eventually appear to freeze in time, while emitting progressively redder and fainter light. For instance, objects with the current redshift z from 5 to 10 will remain observable for no more than 4–6 billion years. In addition, light emitted by objects currently situated beyond a certain comoving distance (currently about 19 billion parsecs) will never reach
Earth.[17]
For instance, objects with the current redshift z from 5 to 10 will remain observable for no more than 4–6 billion years.
In addition, light emitted by objects currently situated beyond a certain comoving distance (currently about 19 billion parsecs) will never reach Earth.
Granted...however, it is still not clear (to me at least) if the 2001 paper [cue the _Also sprach Zarathustra_ music] takes into account the fact that the Hubble [space] constant is decreasing in time such that ~14Gpc may not in the future represent the distance at which objects recede at the speed of light.alter-ego wrote: ↑Mon Aug 03, 2020 1:57 amhttps://en.wikipedia.org/wiki/Observable_universe wrote:
...In addition, light emitted by objects currently situated beyond a certain comoving distance (currently about 19 billion parsecs) will never reach Earth.
- This statement is not from the paper and looks plain wrong. What comoving distance (i.e. event horizon or particle horizon) is being referred to? Without more context, 19Gpc makes no sense - it is ~36% larger than the observable universe (aka particle horizon). Correctly stated in Wiki's first paragraph (quoted by Art), the particle horizon currently has a fundamental, limiting radius ~47Gly ( or ~14Gpc).
→ Per the current ΛCDM model, NOTHING beyond this radius has been or will ever be observable. It's a hard-wall boundary to anything observable beyond it. Of course, as time progresses, the particle horizon grows as space expands without new energy/objects added to the system.
- Regarding the Even[t] Horizon, for any object with z ≥ ~1.8, the light emitted today will never reach the Earth. Those higher-z objects are beyond our Event Horizon (comoving distance ≈ 16Gly) - Also not 19Gpc.
http://132.236.6.82/the-universe/cosmology-and-the-big-bang/expansion-of-the-universe/616-is-the-universe-expanding-faster-than-the-speed-of-light-intermediate wrote:Is the universe expanding faster than the speed of light?
Answered by Dave Rothstein
Last updated February 10, 2016.
<<Which galaxies are currently "saying their last goodbyes?" That is, if we imagine that there are aliens living in these galaxies who hope to make contact with us, which galaxies are running up against their deadline right at this moment? A reasonable guess would be that the galaxies which are currently moving at the speed of light with respect to us (at a distance of 4,200 megaparsecs and redshift of 1.4, as discussed above) are at the "critical point" where any light they emit after now will never be able to reach us. Roughly speaking, this is correct, but a detailed calculation (such as the one contained in this paper) shows that for the simplest viable model of the universe's acceleration, it is actually galaxies at a distance of 4,740 megaparsecs and redshift of 1.69 that are just now reaching the critical point, while galaxies at a redshift of 1.4 are still emitting light that will eventually reach us.
The difference is due to a rather subtle fact: Even though the universe is "accelerating" in the sense that each galaxy moves faster as time goes on, the Hubble constant is actually decreasing with time -- in other words, the rate at which space is expanding, measured at a point which is at a fixed distance from us, gets smaller as time goes on. If we keep our eyes on an individual galaxy as it moves away from us, we will see it accelerate, but if we keep our eyes on a fixed point in space and watch many different galaxies go past that point, each galaxy's speed will be slower than the one before it. (As a very rough analogy, the universe behaves like a river with rapids. If you put a boat in the river and allow it to be carried by the flow, it will accelerate as it moves downstream and enters the rapids. But if you sit on the bank and measure the speed of the water at one location, it changes based on an entirely different set of factors -- for example, the rate at which the supply of water from upstream is changing. It is possible for the water speed at your location to decrease with time, even though each boat that you release accelerates as it heads into the rapids.) Because of this effect, if light is able to "swim against the tide" and remain at a roughly constant distance with respect to us (as would happen if it is emitted from a galaxy moving away from us at the speed of light), then as time goes on and the Hubble constant decreases, it will eventually be able to gain ground, "swim upstream" and traverse the necessary distance of space to reach us.>>
Well, if you're suggesting that the 19Gpc calculation did not include the slowing of the Hubble constant over time, that might be true. However, it isn't the paper, it's whoever wrote the Wiki paragraph. I've gone through the Cosmic expansion math in both the closed-form solution (ΩVAC & ΩM) in proper coordinates, and the more general comoving coordinate solution by integrating Friedmanns Eq. (includes radiation, ΩR). I checked Loeb's results at Z=10, and agrees very well. His plots/calculations therefore must include the time dependence of H, and his approach is the closed-form one. In fact the Hubble constant is handled correctly in the paper. Unfortunately, the paper does not reveal many great analytical equations that very well describe cosmic expansion at times >10Myr after the Big Bang. As an example, the Hubble constant varies with time as:neufer wrote: ↑Mon Aug 03, 2020 5:38 pmGranted...however, it is still not clear (to me at least) if the 2001 paper [cue the _Also sprach Zarathustra_ music] takes into account the fact that the Hubble [space] constant is decreasing in time such that ~14Gpc may not in the future represent the distance at which objects recede at the speed of light.alter-ego wrote: ↑Mon Aug 03, 2020 1:57 amhttps://en.wikipedia.org/wiki/Observable_universe wrote:
...In addition, light emitted by objects currently situated beyond a certain comoving distance (currently about 19 billion parsecs) will never reach Earth.
- This statement is not from the paper and looks plain wrong. What comoving distance (i.e. event horizon or particle horizon) is being referred to? Without more context, 19Gpc makes no sense - it is ~36% larger than the observable universe (aka particle horizon). Correctly stated in Wiki's first paragraph (quoted by Art), the particle horizon currently has a fundamental, limiting radius ~47Gly ( or ~14Gpc).
→ Per the current ΛCDM model, NOTHING beyond this radius has been or will ever be observable. It's a hard-wall boundary to anything observable beyond it. Of course, as time progresses, the particle horizon grows as space expands without new energy/objects added to the system.
- Regarding the Even[t] Horizon, for any object with z ≥ ~1.8, the light emitted today will never reach the Earth. Those higher-z objects are beyond our Event Horizon (comoving distance ≈ 16Gly) - Also not 19Gpc.
The Wiki paragraph was certainly misleading at best... but it referenced far more than a single article.alter-ego wrote: ↑Tue Aug 04, 2020 4:31 amWell, if you're suggesting that the 19Gpc calculation did not include the slowing of the Hubble constant over time, that might be true. However, it isn't the paper, it's whoever wrote the Wiki paragraph. I've gone through the Cosmic expansion math in both the closed-form solution (ΩVAC & ΩM) in proper coordinates, and the more general comoving coordinate solution by integrating Friedmanns Eq. (includes radiation, ΩR). I checked Loeb's results at Z=10, and agrees very well. His plots/calculations therefore must include the time dependence of H, and his approach is the closed-form one. In fact the Hubble constant is handled correctly in the paper. Unfortunately, the paper does not reveal many great analytical equations that very well describe cosmic expansion at times >10Myr after the Big Bang. As an example, the Hubble constant varies with time as: Where Ho and Ωo are the Hubble constant and Vacuum energy fraction today. Ht and t are the Hubble constant at an arbitrary time, t, past or future). Of course, t=0 is the Big Bang.neufer wrote: ↑Mon Aug 03, 2020 5:38 pmGranted...however, it is still not clear (to me at least) if the 2001 paper [cue the _Also sprach Zarathustra_ music] takes into account the fact that the Hubble [space] constant is decreasing in time such that ~14Gpc may not in the future represent the distance at which objects recede at the speed of light.alter-ego wrote: ↑Mon Aug 03, 2020 1:57 am
- This statement is not from the paper and looks plain wrong. What comoving distance (i.e. event horizon or particle horizon) is being referred to? Without more context, 19Gpc makes no sense - it is ~36% larger than the observable universe (aka particle horizon). Correctly stated in Wiki's first paragraph (quoted by Art), the particle horizon currently has a fundamental, limiting radius ~47Gly ( or ~14Gpc).
→ Per the current ΛCDM model, NOTHING beyond this radius has been or will ever be observable. It's a hard-wall boundary to anything observable beyond it. Of course, as time progresses, the particle horizon grows as space expands without new energy/objects added to the system.
- Regarding the Even[t] Horizon, for any object with z ≥ ~1.8, the light emitted today will never reach the Earth. Those higher-z objects are beyond our Event Horizon (comoving distance ≈ 16Gly) - Also not 19Gpc.
Long story short, my background in these matters is not formal. I have a degree in physics, an obsessive analytical tendency, a long career in science and industrial R&D, and a lifetime of interest in astronomy including GR and Cosmology portioned with opportunity, experience, hard work and some luck. Then I joined this forum where I often encounter challenging questions that I'm driven to answer, often turning into mini research projects.
I, personally, prefer placing that particular banner at the top of my posts.
Yeah, I do.neufer wrote: ↑Sat Aug 08, 2020 1:25 pm >>> Estimated values of the Hubble constant, 2001–2019. Estimates in black represent calibrated distance ladder measurements which tend to cluster around 73 km/s/Mpc, red represents early universe CMB/BAO measurements with ΛCDM parameters which show good agreement on a figure near 67 km/s/Mpc, while blue are other techniques, whose uncertainties are not yet small enough to decide between the two.
I must admit, these are exciting times.S&T Article wrote: Starting three or so years from now, the European Space Agency’s Euclid mission and the Vera C. Rubin Observatory will greatly improve on current surveys, both in sensitivity and in sky coverage. Eventually, it will become clear whether or not we’ll have to discard our cherished theoretical model of the universe.