Post
by kovil » Mon Mar 26, 2007 9:20 pm
Yes, that is the backup reasoning of the standard solar model (SSM).
Have you read this tho . . .
Electrical Cosmology
Introduction
If the Sun is essentially an electrical phenomenon, as seems the case, and it is also a fairly typical star, then all stars should exhibit properties that are consistent with the Electric Sun (ES) model. Do they? Let us extrapolate the ES model and compare it to what we have observed about stars.
In 1911 Ejnar Hertzspung constructed a plot of the absolute brightness vs. spectral class (temperature) of the stars whose distances we could then accurately measure by the parallax method. In 1913 Henry Norris Russell independently repeated this exercise. This plot is therefore named the Hertzsprung-Russell (HR) diagram, and is one of the first topics presented in introductory astronomy courses. It is clear that the HR diagram is a plot of actual observations – not something deduced from theory. So, any viable model of the workings of a star must be consistent with it. Is the Electric Sun (ES) model of how a star is powered consistent with the HR diagram? If it is not, then this would disprove the ES hypothesis.
The Hertzsprung-RussellDiagram
In the HR diagram, as it is usually presented, the vertical axis is labeled with two scales: Absolute Magnitude (linear scale from about 18th magnitude at the bottom running up to perhaps -8 or so at the top), and Luminosity x Sun (log scale with 0.00001 at the bottom running up to 100,000 at the top). The horizontal axis also is labeled with several scales: Spectral Class - left to right: O and B [blue], A [white], F [yellow], G [yellow-orange], K [orange], M [red]). More often, recently, the "Johnson B-V index" replaces the Spectral Class scale. B = blue, and V = visual. A star is viewed through a blue (pass) filter and then in visible light. The star's "color index" is the difference in apparent magnitude between the two observations. B-V is zero for the star Vega (spectral class A0), and is about 0.61 for the Sun which is redder than Vega. Red giant Betelgeuse has a B-V index of 1.83 and spectral class M2. Originally, the B-V index was simply the difference between a star's visual and photographic magnitudes.
Another horizontal axis scale - Absolute Temperature, also runs from left to right (from around 20,000 K down to 3000 K) corresponding to the (decreasing!) black-body temperature of those spectral classes. [As an engineer, I object to plotting increasing temperature from right to left! But such is the convention of astronomers. We will live with it.] A single given star defines a single point on this plot. A web search for the topic "Hertzsprung-Russell Diagram" will yield many different renderings of the HR plot.
Our Sun, being a fairly typical star, falls almost at the center of the diagram (at Luminosity = 1 and Absolute magnitude. = 5, Spectral Class G, and (photospheric) Temp. = 6,000K). The points on the plot seem to group nicely, generally forming a long, slightly diffuse line, that snakes from the upper left down toward the lower right. The line falls very steeply at the lower right end. There are two other less populated clouds of points: one group at the upper right and another one strung out across the bottom of the plot from a concentration in the lower left of the diagram.
Add A New Horizontal Axis Scale
In the ES model the important variable is: current density (Amps/sq m) at the star's photospheric surface. If a star's current density increases, the arc discharges on its surface (photospheric granules) get hotter, change color (away from red, toward blue), and get brighter. The absolute luminosity of a star, therefore, depends on two main variables: current density at its effective surface, and its size (the star's diameter).
Therefore, let us add a new scale to the horizontal axis of the HR diagram: "Current Density at the Surface of each Star". Consider moving from the lower right of the HR diagram toward the left. In so doing we are moving in the direction of increasing current density at the star's surface.
Red and Brown Dwarfs
The first region on the lower right of the diagram is where the current density has such a low value that double layers (DLs) (photospheric granules) are not needed by the plasma surrounding the (anode) star. This is the region of the brown and red "dwarfs" and giant gas planets. Recent discoveries of extremely cool L - Type and T - Type dwarfs has required the original diagram to be extended to the lower right (See below). These "stars" have extremely low absolute luminosity and temperature.
Notice that the surface temperature of the T - Type dwarfs is in the range of 1000 K or less! For comparison purposes (only) recall that some points on the surface of Venus are in the range of 900 K. T - Type spectra have features due mostly to Methane - they resemble Jupiter's spectrum. The plasma that constitutes a star of this type is in its "normal glow" range - or perhaps, even the "dark current" range. If all stars are indeed powered by a nuclear fusion reaction as is claimed, with the T dwarfs we must be in the "cold fusion" range! Indeed, for any fusion reactions to occur at all, standard theory requires that the temperature in a star's core must reach at least three million K. And because, in the accepted model, core temperature rises with gravitational pressure, the star must have a minimum mass of about 75 times the mass of the planet Jupiter, or about 7 percent of the mass of our sun. Many of the dwarfs do not meet these requirements. One mainstream astrophysicist, realizing this, has said that these dwarfs must be powered by "gravitational collapse".
The orbiting X-ray telescope, Chandra, recently discovered an X-ray flare being emitted by a brown dwarf (spectral class M9). This poses an additional problem for the advocates of the stellar fusion model. A star this cool should not be capable of X-ray flare production.
However, in the ES model, there are no minimum temperature or mass requirements because the star is inherently electrical to start with. In the ES model (if a brown/red dwarf is operating near the upper boundary of the dark current mode), a slight increase in the level of total current impinging on that star will move it into the normal glow mode. This transition will be accompanied by a rapid change in the voltage rise across the plasma of the star's atmosphere. Maxwell's equations tell us that such a change in voltage can produce a strong dynamic E-field and a strong dynamic magnetic field. If they are strong enough, dynamic EM fields can produce X-rays. Another similar phenomenon can occur if a star makes the transition from normal glow to arc mode.
As we progress leftward in the HR diagram, the plotted points move steeply upward; we enter the spectral M range where some arc tufting becomes necessary to sustain the star's electrical discharge.
As current density increases, tufts (plasma in the arc discharge mode) cover more and more of the surface of each star, and the stars' luminosity increases sharply – plasma arcs are extremely bright compared to plasma in its normal glow mode. You can look directly at neon signs but not at electric arc welders. This accounts for the steepness of the HR curve in the M region – a slight increase in current density produces a large increase in luminosity. As we move upward and toward the left in the diagram, stars have more and more complete coats of photospheric arcs (tufting).
A case in point – NASA recently discovered a star, half of whose surface was "covered by a sunspot". A more informative way to say this would have been that "Half of this star's surface is covered by photospheric arcing." The present controversy about what the difference is between a giant gas planet and a brown dwarf is baseless. They are members of a continuum – it is simply a matter of what the level of current density is at their surfaces. NASA's discovery supplies the missing link between the giant gas planets and the fully tufted stars. In fact, the term "proto-star" may be more descriptive than "giant gas planet".
Main Sequence Stars
Continuing toward the left, beyond the "knee of the curve", all these stars (K through B) are completely covered with tufts (have complete photospheres), their luminosity no longer grows as rapidly as before. But, the farther to the left we go (the higher the current density), the brighter the tufts become, and so the stars' luminosities do continue to increase. The situation is analogous to turning up the current in an electric arc welding machine. The increased brightness of the arcs accounts for the upward slope of the line toward the left. Mathematically we have the situation where the variable plotted on the horizontal axis (current density) is also one of the factors in the quantity plotted on the vertical axis (luminosity). The more significant this relationship is, the more closely the plot will approach a 45 degree straight line.
[Reminder: Our progression from right toward the left is not a description of one star evolving in time - we are just moving across the diagram from one static point (star) to another.]
That the stars do not all fall precisely on a line, but have some dispersion above and below the line, is due to their variation in size. The relatively straight portion of the HR diagram is called the "main sequence." This nomenclature gives a false impression, that stars move around "sequentially" in the HR plot. The HR diagram is a static scatter plot, not a sequence.
White and Blue Stars
When we get to the upper left end of the main sequence, what kind of stars are these? This is the region of O type, blue-white, high temperature (35,000+ K) stars. As we approach the far upper-left of the HR diagram (region of highest current density), the stars are under extreme electrical stress - too many Amps per sq. meter. Their absolute luminosities approach 100,000 times the Sun's. Extreme electrical stress can lead to a such a star's splitting into parts, perhaps explosively. Such explosions are called novae. The splitting process is called fissioning.
Fissioning
To quote from page 6 of Wal Thornhill's web site on the Electric Universe:
"….. internal electrostatic forces prevent stars from collapsing gravitationally and occasionally cause them to "give birth" by electrical fissioning to form companion stars and gas giant planets. Sudden brightening, or a nova outburst marks such an event. That elucidates why stars commonly have partners and why most of the giant planets so far detected closely orbit their parent star."
If a sphere of fixed volume splits into two smaller (equal sized) spheres, the total surface area of the newly formed pair will be about 26% larger than the area of the original sphere. (If the split results in two unequally sized spheres, the increase in total area will be something less than 26%.) So, to reduce the current density it is experiencing, an electrically stressed, blue-white star may explosively fission into two or more stars. This provides an increase in total surface area and so results in a reduced level of current density on the (new) stars' surfaces. Each of two new (equal sized) stars will experience only 80% of the previous current density level and so both will jump to new locations farther to the lower-right in the HR diagram.
A possible example of two equal sized offspring may be the binary pair called Y Cygni. This is a pair of giant O or B type stars that orbit each other in a period of 2.99 days. Each star is some 5 million miles in diameter and 5000 times as luminous as our Sun - absolute magnitudes about -4.5. They are some 12 million miles apart (less than 2.5 times their diameters!). Their masses are 17.3 and 17.1 times the mass of our Sun.
If the members of the resulting binary pair turn out to be unequal in size, the larger one will probably have the larger current density - but still lower than the original value. (This assumes that the total charge and total driving current to the original star distributes itself onto the new stars proportionally to their masses.) In this case, the smaller member of the pair might have such a low value of current density as to drop it, abruptly, to "brown dwarf" or even "giant planet" status. That may be how giant gas planets get born (and are in close proximity to their parents).
There was an interesting statement made in this regard in the Jan. 1, 2001 issue of Science Now magazine (p.4). "Astronomers are scratching their heads over a strange new planetary system. A team discovered a huge gas ball -- apparently a failed star called a brown dwarf -- circling a star that holds another planet in its sway. But no one understands how something so massive as a brown dwarf could form so close to a normal star with a planetary companion." This was in an article called "An awkward trio disturbs astronomers" by G. Schilling.
The final distribution of mass and current density is sensitive to the mechanics of the splitting process. Such a process can only be violent - possibly resulting in a nova eruption. Some mass may be lost to the plasma cloud that later can appear as a planetary nebula or nova-remnant that surrounds the binary pair. If the charge on the original star was highly concentrated on or near its surface, and the fissioning process is similar to the peeling off of a onion's skin, then most of that original charge (and current) may end up on the offspring star that is constituted only of the skin of the original star. In this way the smaller, rather than the larger of the two members of the resulting binary pair, can be the hotter one. In any event, both stars will move to different positions in the HR diagram from where their parent was located.
Stellar Evolution
Mainstream astronomy attempts to describe how stars "age" (run out of nuclear fuel) and slowly migrate, taking hundreds of thousands of years to do so, tracing paths from one location on the HR diagram to another (the star going from one spectral class to another). The paths that stars "must take" are, of course, completely predicated on the assumption that stars are fueled by the various stages of nuclear fusion of the lightest elements.
The ES model does not make that assumption. Humans have not been around long enough to actually observe any stars making the predicted slow migrations from one place on the HR diagram to another. So, at present, slow "stellar evolution" is another one of those complicated theoretical constructs that live brightly in the minds of astrophysicists without any observational evidence of their actual existence.
Examples That Falsify (Disprove) The Accepted Stellar Evolution Process
FG Sagittae
The star FG Sagittae breaks all the rules of accepted stellar evolution. FG Sagittae has changed from blue to yellow since 1955! It, quite recently, has taken a deep dive in luminosity. FG Sagittae, is the central star of the planetary nebula (nova remnant?) He 1-5. It is a unique object in the sense that for this star we have direct evidence of stellar evolution but in a time scale comparable with the human lifetime. [CCD Astronomy, Summer 1996, p.40.]
"Around 1900 FG Sge was an inconspicuous hot star (T = 50,000 K) of magnitude 13. During the next 60 years it cooled to about 8000 K and brightened in the visual region to magnitude 9, as its radiation shifted from the far-UV to the visual region. Around 1970 a whole new bunch of spectral lines appeared due to elements such as Sr, Y, Zr, Ba and rare earths. .... The star cooled further in the 1970s and 80s and then all of a sudden in 1992 its magnitude dropped to 14. Further drops occurred from 1992 to 1996 with a very deep minimum near magnitude 16 in June of 1996." [Italics added]
So, after abruptly brightening by four magnitudes, it has dropped seven magnitudes. From the end of the last century FG Sagittae has moved across the HR diagram changing from a normal hot giant to a "late spectral type" (cool) star with marked changes in its surface chemical composition. Its present surface temperature is in the range of 4000K. This is not the kind of slow stellar "evolution" mainstream astrophysicists preach.
And FG Sagittae is a binary pair!
The official wording was, "In 1995 FG Sge changed in brightness in a quite sporadic manner from V~10.5 to ~13.0 according to the data by Hungarian Astronomical Association-Variable Star Section. During the spectral observations on 9/10 and 10/11 August, FG Sge was very faint (HAA-VSS data: V~12.5-13.0, according to Variable Stars Observers' League of Japan: ~13.3) and therefore erroneously the visual companion 8'' apart from FG Sge was actually observed. This is probably the first high resolution spectrum of the companion ever obtained. The spectrum turned out to correspond to a quite normal giant with the spectral type around K0."
Is FG Sagittae an example of the binary fissioning (caused by electrical stress) that was described above? It seems to have all the basic characteristics: nova-like brightening followed by loss of luminosity and loss of temperature - moving to a different spectral type with marked changes in its surface chemical composition, discovery of a binary companion, and the entire systems lies within a nebulous nova remnant.
Two More Examples That Falsify the Accepted Stellar Evolution Process
Virginia Trimble, professor of physics at the University of California, Irvine, and visiting professor of astronomy at the University of Maryland, has said recently:
"We don't often see stars change their spectral types in a human lifetime. Thus, FG Sagittae, which brightened, cooled from about BO to K, and added lines of carbon, barium, and other elements to its spectrum in the century after 1890 was long seemingly unique. The standard interpretation has been that it experienced its very last flash of helium shell burning (the products are carbon and oxygen) and was about to become an R Coronea Borealis variable. These are carbon-rich stars that fade suddenly and unpredictably (which FG Sge started doing a couple of years ago) and that have hydrogen-depleted atmospheres (which FG Sge has just developed). In addition, the "galloping giant" is no longer alone. Examination of old images and spectrograms reveal that V 605 Aquilae, studied by Knut Lundmark in the 1920's was a similar sort of beast, though it is now very faint And the latest recruit is V 4334 Sagittarii, better known as Sakurai's object, for its 1994 discoverer. It, too, changed both spectral type and surface composition very rapidly, and is now hydrogen-poor and carbon-rich, and well on its way to becoming the century's third new R CrB star."
And Yet A Fourth Example - V838 Monocerotis
THE NEWEST EVIDENCE !!
On October 2, 2002, NASA's Astronomy Picture of the Day (APOD) announced what is to them another "mystery star".
Click here for the official announcement.
The official "explanation" reads, in part:
"V838 Mon was discovered to be in outburst in January of this year. Initially thought to be a familiar type of classical nova, astronomers quickly realized that instead, V838 Mon may be a totally new addition to the astronomical zoo. Observations indicate that the erupting star transformed itself over a period of months from a small under-luminous star a little hotter than the Sun, to a highly-luminous, cool supergiant star undergoing rapid and complex brightness changes. The transformation defies the conventional understanding of stellar life cycles. A most notable feature of V838 Mon is the "expanding" nebula which now appears to surround it." [Ital and emphasis added.]
So now there are at least four prime examples of stars that do not evolve according to the accepted thermonuclear model of how stars are powered. These are stars that falsify the conventional understanding of stellar life cycles. All of them act in a manner predicted by the Electric Star hypothesis.
In the Electric Star version of "stellar evolution" things can happen quickly. If the fusion model were correct, it would take hundreds of thousands of years for a star to change from one place in the HR diagram to another. It would not be observed within a "human lifetime". It didn't take FG Sagittae hundreds of thousands of years to "run down." The star V838 Monocerotis has moved half way across the Hertzsprung-Russell diagram in a few months. Migrating across the HR diagram can happen very rapidly - and apparently does! How many such counter-examples does it take for astrophysicists to realize their stellar fusion theory has been falsified?
Red Giants
The diffuse group in the upper right hand corner of the HR diagram are stars which are cool (have low values of current density powering them) but are luminous and so must be very large. They are highly luminous only because of their size. These are the red giants. They are not necessarily any older than any other star. Notice that some are relatively quite cool - in the range of 1000 K. How do stars at this low a temperature maintain an internal fusion reaction? The simple answer is: They cannot! And they do not!
White Dwarfs
Similarly, the group in the lower left hand corner have very low absolute luminosity but are extremely hot. The ES model simply explains them as being very small stars that are experiencing very high current densities. These are the "white dwarfs." Although most of them are concentrated in the lower-left corner of the diagram, the white dwarf group actually extends thinly across the bottom of the diagram. Thus the name white dwarf is a kind of misnomer. The shape of this thin grouping begins to drop off steeply at its (cooler) right end much as the main sequence does.
A professional astronomer has been quoted as saying:
"The observed white dwarfs are basically cooling embers. The nuclear fire of the stars burned out billions of years ago. The light emitted comes from the heat remaining from the earlier nuclear burning. By measuring the spectrum of the light, the brightness in various colors, the temperatures of the stars were determined. The two coolest of the white dwarfs studied, PSR J0034-0534 and PSR J1713+0747, are 3400 degrees Kelvin (5600 F), making them the coolest known white dwarfs. For comparison, the surface of the sun measures 5800 degrees Kelvin and the coolest previously known white dwarfs are 4000 degrees Kelvin."
But then, why are these relatively cool stars called "white"? One presumes it is only because they seem to be members of the grouping in the HR diagram that was originally given that name.
Spectral Lines in Various Types of Stars
In a paper entitled “Stellar Spectra” (Aeon, Vol. V, No. 5, Jan. 2000, p. 37.) the late Earl R. Milton, Professor of Physics, University of Lethbridge reported on research he had performed on spectral line broadening in 1971 while at the Dominion Astrophysical Observatory in Vancouver, British Columbia. This work provides strong evidence in support of the Electric Sun model.
If a relatively cool gas comes between a wide-band light source and an observer, absorption lines will appear in the light's spectrum. These lines arise because of the absorption of (light) energy by the atoms of the gas. Electrons in those atoms jump from lower to higher discrete quantum energy states - they get the energy to make that jump from the light (having exactly the frequency that corresponds to that energy gap) that is passing through the gas. Each element in the gas produces its own signature pattern of lines. By recognizing the line patterns, we can identify the gas that is causing those lines. This method is used to discern what elements and molecules are present in the upper atmospheres of stars.
If, on the other hand, a sufficiently strong electric current is passed through a gas, the gas itself will emit a light spectrum in which only a few discrete colors (frequencies) appear. These are called emission lines. They are located precisely at those wavelengths (frequencies) at which that same gas produces absorption lines as described in the previous paragraph.
The spectra of most stars are heavily dominated by absorption lines. Spectra from the cooler stars (such as types G and K) are dominated by molecular bands arising from oxides (like ZrO and TiO) and from compounds of carbon like CH, CN, CO, and C2. Stars like the Sun (type G) show “metal” absorption lines. Astronomers call any element heavier than Helium a “metal”. In fact the Sun shows the presence of 68 of the known elements. The spectra of hot O and B type stars show few lines, and what lines they do have appear quite blurred or “broadened”. There are a few possible causes of this broadening.
If the absorbing gas is in a magnetic field, each line may split, symmetrically, into multiple, closely spaced lines. This is called the Zeeman effect - named for its discoverer, Pieter Zeeman (1865-1943).
If the gas is in an electric E-field, then lines split unsymmetrically - this is called the Stark effect named for Johannes Stark (1874-1957). These secondary lines are very closely spaced in frequency (wavelength) and so the effect is sometimes called line-broadening or blurring. A most important property is that the degree of Stark (electric field) broadening depends on the atomic mass of the affected gas. The lines of heavy elements are only slightly broadened whereas those of lighter atoms and ions are quite smeared out. This effect is not noted in Zeeman (magnetic field) broadening.
As we progress from right to left up the “main sequence” in the Hertzsprung-Russell diagram – from the less electrically stressed stars toward those experiencing higher current input, we see an increasing broadening of spectral lines. In fact at the upper left end (O-type stars) there is so much blurring that we can distinguish very little structure in the line spectra. Is this caused by the increasing strengths of the E-fields in the stars' DLs as electrical stress increases? And, is increased E-field strength the only possible explanation for this line broadening? Milton states that two pieces of evidence strongly suggest that the answer is yes.
In highly stressed B-type stars:
1. A line at 4471.6 Angstroms is accompanied by a “forbidden” partner at 4469.9 Angstroms. It is well known that this latter line only occurs when an electric field is present.
2. There is an extreme difference between the degree of broadening of the lines from hydrogen and helium (light elements) and those arising from sodium and ionized calcium (heavier elements). This effect is only noted in Stark effect broadening.
The usual mainstream explanation of line broadening is that the star must be rotating rapidly – light from the limb going away from us is red shifted, and light from the limb coming at us is blue shifted – the total effect being to smear out the line widths. BUT, if that were the true explanation, the lines from hydrogen should be no more smeared out than those from calcium. Both of these observations (1 and 2 above) strongly suggest that it is the Stark effect that is selectively broadening the spectral lines in B-type stars. And that indicates the presence of strong electric fields above their surfaces.
There is no simple explanation of these spectral effects via the (non-electrical) thermonuclear core model. So, let us consider to what degree this phenomenon – the existence of spectral absorption lines and their selective broadening – is consistent with the Electric Sun model.
In the Electric Sun model it is clear that the photosphere is the site of a strong plasma arc discharge. This produces the Sun's continuous visible light spectrum. Immediately above this in the Sun’s atmosphere there is the Double Layer (DL) in which an intense, outwardly directed electric field resides. It is within this strong E-field that many heavy elements are created by z-pinch fusion. Recall that the strong E-field dethermalizes the ions in that region and thus it is the (relatively) coolest layer of the Sun's atmosphere. Light that originates in the photosphere passes through the relatively cool, newly formed heavier elements in the DL. These heavier elements selectively absorb energy from the light's spectrum and thus the absorption lines are created. In fact they are created in exactly the place where the Sun's E-field is strongest. Thus we have the ideal situation for selective broadening of those lines due to the Stark effect.
In those instances wherein we see emission lines in a star’s spectrum we may speculate that, just as in the laboratory, the easiest way to generate them is by passing a strong electric current through a tenuous gas cloud. For example, type W (Wolf-Rayet) stars are under such intense electrical input that they are hotter even than type O stars. They are located to the left of the top of the Hertzsprung-Russell diagram. They typically show strong emission lines in their spectra. Since these stars experience stronger electrical currents than any other type star, there is ample probability that any tenuous coronal gases will be excited by such currents to produce emission lines.
At the other end of the HR diagram, type M (relatively cool) stars also sometimes exhibit spectral emission lines. Can we explain this via the Electric Sun model as well? Consider the star Betelgeuse – a type M red giant. The average density of Betelgeuse is less than one ten thousandth of the density of the air we breathe. A star of such tenuous nature has often been called a “red hot vacuum”. The outer “surface” of this tenuous sphere (the radius of which is larger than the orbit of Jupiter from the Sun) has been found to have three bright areas of photospheric tufting above which we would expect to find DLs wherein z-pinch fusion may occur. It is from this source that the absorption lines in the M-type spectra come. But, in addition, Betelgeuse is surrounded by a coronal plasma that extends out several hundred radii from the surface of the star. This corona is even less dense than the star itself. Thus we have a gigantic gas cloud through which (according to the Electric Star model) electric current is passing – an ideal situation for the production of spectral emission lines.
So, once again, in the case of stellar emission and absorption lines and their selective broadening, we observe a stellar phenomenon that is more consistent with the Electric Sun model than it is with the “fusion core” model (in which, of course, no mention is made of electric fields).
there is more to this but that's enough for now. Thanks Michael !!!