APOD: Wolf-Rayet 124 (2023 Mar 18)

Comments and questions about the APOD on the main view screen.
User avatar
APOD Robot
Otto Posterman
Posts: 5592
Joined: Fri Dec 04, 2009 3:27 am
Contact:

APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by APOD Robot » Sat Mar 18, 2023 4:06 am

Image Wolf-Rayet 124

Explanation: Driven by powerful stellar winds, expanding shrouds of gas and dust frame hot, luminous star Wolf-Rayet 124 in this sharp infrared view. The eye-catching 6-spike star pattern is characteristic of stellar images made with the 18 hexagonal mirrors of the James Webb Space Telescope. About 15,000 light-years distant toward the pointed northern constellation Sagitta, WR 124 has over 30 times the mass of the Sun. Produced in a brief and rarely spotted phase of massive star evolution in the Milky Way, this star's turbulent nebula is nearly 6 light-years across. It heralds WR 124's impending stellar death in a supernova explosion. Formed in the expanding nebula, dusty interstellar debris that survives the supernova will influence the formation of future generations of stars.

<< Previous APOD This Day in APOD Next APOD >>

C0ppert0p
Ensign
Posts: 34
Joined: Mon Nov 27, 2006 6:03 pm
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by C0ppert0p » Sat Mar 18, 2023 4:14 am

I'm not a big fan of the 18-mirror diffraction artifact.
But a lovely picture nonetheless

eljayhalflife

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by eljayhalflife » Sat Mar 18, 2023 4:56 am

I was in nuclear medicine for 25 years. Our cameras have no mirrors (or lenses, unless you count lead collimation), but we regularly see six-sided diffraction spikes in the images when the detectors are over-saturated. Is there something about JWST that dictates the six-sided spikes or is it just the degree of over-saturation that makes it 6 and not 4 or 8? I guess since the septa in the nuclear medicine collimators are hexagonal that might make the spikes six-sided, but there are literally thousands in one FOV, so maybe not.

alex555

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by alex555 » Sat Mar 18, 2023 7:47 am

At the very top left there is a funny galaxy which looks like the empty set in math.

Alex.

User avatar
VictorBorun
Captain
Posts: 1136
Joined: Fri Oct 16, 2020 10:25 pm
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by VictorBorun » Sat Mar 18, 2023 8:47 am

alex555 wrote: Sat Mar 18, 2023 7:47 am At the very top left there is a funny galaxy which looks like the empty set in math.

Alex.
is it that the galaxy is gravi-lensing and representing twice a background quasar?
Wolf-Rayet 124 (2023 Mar 18).jpg
Wolf-Rayet 124 (2023 Mar 18).jpg (14.69 KiB) Viewed 5487 times
Last edited by VictorBorun on Sat Mar 18, 2023 10:08 am, edited 1 time in total.

User avatar
VictorBorun
Captain
Posts: 1136
Joined: Fri Oct 16, 2020 10:25 pm
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by VictorBorun » Sat Mar 18, 2023 8:58 am

I would never thought of such colour representation but why not?
The stars are in the near infrared only, so they are represented truly.
Wolf-Rayet 124 (2023 Mar 18) legend.jpg
This image combines various filters from both Webb imaging instruments, with the color red assigned to wavelengths of 4.44, 4.7, 12.8, and 18 microns (F444W, F470N, F1280W, F1800W), green to 2.1, 3.35, and 11.3 microns (F210M, F335M, F1130W), and blue to 0.9, 1.5, and 7.7 microns (F090W, F150W, F770W).

But what about the IR colour of the Empty Set Galaxy?
Well, it is not in the MIRI's frame, so it's orange comes from 2.1, 3.35, 4.44, 4.7 microns
Last edited by VictorBorun on Sat Mar 18, 2023 9:16 am, edited 4 times in total.

User avatar
Ann
4725 Å
Posts: 13843
Joined: Sat May 29, 2010 5:33 am

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Ann » Sat Mar 18, 2023 8:59 am

alex555 wrote: Sat Mar 18, 2023 7:47 am At the very top left there is a funny galaxy which looks like the empty set in math.

Alex.
Null sign or Danish letter Ø detail from APOD 18 March 2023.png
Null sign or Danish letter Ø detail from APOD 18 March 2023.png (50.96 KiB) Viewed 5483 times

This galaxy looks like the null sign, you mean? This? :arrow:

Or maybe it is a Danish letter? You know that Copenhagen, the capital of Denmark, is spelled "København" in Danish?

Sorry for exaggerating the ø!

Ann
Color Commentator

User avatar
VictorBorun
Captain
Posts: 1136
Joined: Fri Oct 16, 2020 10:25 pm
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by VictorBorun » Sat Mar 18, 2023 9:06 am

Ann wrote: Sat Mar 18, 2023 8:59 am
alex555 wrote: Sat Mar 18, 2023 7:47 am At the very top left there is a funny galaxy which looks like the empty set in math.

Alex.

Null sign or Danish letter Ø detail from APOD 18 March 2023.png


This galaxy looks like the null sign, you mean? This? :arrow:

Or maybe it is a Danish letter? You know that Copenhagen, the capital of Denmark, is spelled "København" in Danish?

Sorry for exaggerating the ø!

Ann
Are they really different symbols?
empty set (U+2205)
diameter sign (U+2300)
latin capital letter o with stroke (U+00D8) Ø

User avatar
Holger Nielsen
Ensign
Posts: 76
Joined: Fri Oct 14, 2016 7:45 am

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Holger Nielsen » Sat Mar 18, 2023 9:08 am

I, too, find the diffraction spikes visually disturbing, but the purpose of Webb is not to produce aestetically pleasing images.
Note that there are eight spikes, six originating from the hexagonal mirrors and two more ("horizontal") from the three spokes carrying the secondary mirror.
The following illustration from https://bigthink.com/starts-with-a-bang ... bb-spikes/ might be helpful:
Image
It is the "vertical" spoke which produces the "horisontal" spikes. The other two spokes also produce spikes, but they overlap those produced by the mirrors. As a non-English speaker I hope that "spoke" is the correct term :ssmile: (This should be a high-resolution image, but I can't figure out how to enlarge it on this page)
Last edited by Holger Nielsen on Sat Mar 18, 2023 4:28 pm, edited 1 time in total.

User avatar
VictorBorun
Captain
Posts: 1136
Joined: Fri Oct 16, 2020 10:25 pm
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by VictorBorun » Sat Mar 18, 2023 9:19 am

I wonder why the cloud looks so flat. Is it all in one plane which happens to be perpendicular to our line of sight?

User avatar
Ann
4725 Å
Posts: 13843
Joined: Sat May 29, 2010 5:33 am

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Ann » Sat Mar 18, 2023 11:03 am

VictorBorun wrote: Sat Mar 18, 2023 9:06 am
Ann wrote: Sat Mar 18, 2023 8:59 am
alex555 wrote: Sat Mar 18, 2023 7:47 am At the very top left there is a funny galaxy which looks like the empty set in math.

Alex.

Null sign or Danish letter Ø detail from APOD 18 March 2023.png


This galaxy looks like the null sign, you mean? This? :arrow:

Or maybe it is a Danish letter? You know that Copenhagen, the capital of Denmark, is spelled "København" in Danish?

Sorry for exaggerating the ø!

Ann
Are they really different symbols?
empty set (U+2205)
You are right, they are different. And sorry for sort of messing up what you wrote in my reply.

Ann
Last edited by Ann on Sat Mar 18, 2023 2:26 pm, edited 1 time in total.
Color Commentator

User avatar
Ann
4725 Å
Posts: 13843
Joined: Sat May 29, 2010 5:33 am

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Ann » Sat Mar 18, 2023 11:05 am

VictorBorun wrote: Sat Mar 18, 2023 9:19 am I wonder why the cloud looks so flat. Is it all in one plane which happens to be perpendicular to our line of sight?
In my opinion, it is virtually impossible for the nebula of WR 124 to be two dimensional. It has to be more or less spherical, or possibly two-lobed, in such a way that we are watching one of the lobes face on.

Ann
Color Commentator

User avatar
Chris Peterson
Abominable Snowman
Posts: 18599
Joined: Wed Jan 31, 2007 11:13 pm
Location: Guffey, Colorado, USA
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Chris Peterson » Sat Mar 18, 2023 2:12 pm

eljayhalflife wrote: Sat Mar 18, 2023 4:56 am I was in nuclear medicine for 25 years. Our cameras have no mirrors (or lenses, unless you count lead collimation), but we regularly see six-sided diffraction spikes in the images when the detectors are over-saturated. Is there something about JWST that dictates the six-sided spikes or is it just the degree of over-saturation that makes it 6 and not 4 or 8? I guess since the septa in the nuclear medicine collimators are hexagonal that might make the spikes six-sided, but there are literally thousands in one FOV, so maybe not.
It is precisely because gamma ray collimators have hexagonal cells that you see hexagonal diffraction spikes in gamma ray imagery. It does not matter whether you have a single hexagonal aperture, 18 hexagonal apertures, or a thousand hexagonal aperture. Other than the amount of energy that ends up in the diffraction spikes, the geometry of those spikes will be the same.
Chris

*****************************************
Chris L Peterson
Cloudbait Observatory
https://www.cloudbait.com

User avatar
Chris Peterson
Abominable Snowman
Posts: 18599
Joined: Wed Jan 31, 2007 11:13 pm
Location: Guffey, Colorado, USA
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Chris Peterson » Sat Mar 18, 2023 2:13 pm

Ann wrote: Sat Mar 18, 2023 11:05 am
VictorBorun wrote: Sat Mar 18, 2023 9:19 am I wonder why the cloud looks so flat. Is it all in one plane which happens to be perpendicular to our line of sight?
In my opinion, it is virtually impossible for the nebula of WR 124 to be two dimensional. It has to be more or less spherical, or possibly two-lobed, in such a way that we are watching one of the lobes face on.

Ann
The scientific term for the sort of shapes you're trying to describe is "blobby". (And I agree with your assessment.)
Chris

*****************************************
Chris L Peterson
Cloudbait Observatory
https://www.cloudbait.com

User avatar
Chris Peterson
Abominable Snowman
Posts: 18599
Joined: Wed Jan 31, 2007 11:13 pm
Location: Guffey, Colorado, USA
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Chris Peterson » Sat Mar 18, 2023 2:16 pm

Ann wrote: Sat Mar 18, 2023 11:03 am
VictorBorun wrote: Sat Mar 18, 2023 9:06 am
Ann wrote: Sat Mar 18, 2023 8:59 am


Null sign or Danish letter Ø detail from APOD 18 March 2023.png


This galaxy looks like the null sign, you mean? This? :arrow:

Or maybe it is a Danish letter? You know that Copenhagen, the capital of Denmark, is spelled "København" in Danish?

Sorry for exaggerating the ø!

Ann
Are they really different symbols?
empty set (U+2205)

You are right, they are different.

Ann
diameter sign (U+2300)
latin capital letter o with stroke (U+00D8) Ø
In terms of physical font, they may well be graphically identical. In terms of logical characters, they are defined differently, which makes sense when you consider things like screen readers for the blind or network scanners constructing search indexes.
Chris

*****************************************
Chris L Peterson
Cloudbait Observatory
https://www.cloudbait.com

User avatar
Fred the Cat
Theoretic Apothekitty
Posts: 975
Joined: Mon Feb 22, 2016 4:09 pm
AKA: Ron
Location: Eagle, Idaho

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Fred the Cat » Sat Mar 18, 2023 3:18 pm

VictorBorun wrote: Sat Mar 18, 2023 9:19 am I wonder why the cloud looks so flat. Is it all in one plane which happens to be perpendicular to our line of sight?
Line of sight is discussed in the " frame" link for Wolf-Rayet (WR) nebula M 1-67.
Freddy's Felicity "Only ascertain as a cat box survivor"

eljayhalflife

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by eljayhalflife » Sat Mar 18, 2023 4:23 pm

Chris Peterson wrote: Sat Mar 18, 2023 2:12 pm
eljayhalflife wrote: Sat Mar 18, 2023 4:56 am I was in nuclear medicine for 25 years. Our cameras have no mirrors (or lenses, unless you count lead collimation), but we regularly see six-sided diffraction spikes in the images when the detectors are over-saturated. Is there something about JWST that dictates the six-sided spikes or is it just the degree of over-saturation that makes it 6 and not 4 or 8? I guess since the septa in the nuclear medicine collimators are hexagonal that might make the spikes six-sided, but there are literally thousands in one FOV, so maybe not.
It is precisely because gamma ray collimators have hexagonal cells that you see hexagonal diffraction spikes in gamma ray imagery. It does not matter whether you have a single hexagonal aperture, 18 hexagonal apertures, or a thousand hexagonal aperture. Other than the amount of energy that ends up in the diffraction spikes, the geometry of those spikes will be the same.
Thanks, Chris. The science/math part of my brain said that, but then I doubted myself because of the size of the individual units in the collimator "honeycomb" and quantity of the cells. But what gives JWST 6-sided spikes? One would think 8 or 16 because of the 16 mirrors.

eljayhalflife

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by eljayhalflife » Sat Mar 18, 2023 4:34 pm

eljayhalflife wrote: Sat Mar 18, 2023 4:23 pm
Chris Peterson wrote: Sat Mar 18, 2023 2:12 pm
eljayhalflife wrote: Sat Mar 18, 2023 4:56 am I was in nuclear medicine for 25 years. Our cameras have no mirrors (or lenses, unless you count lead collimation), but we regularly see six-sided diffraction spikes in the images when the detectors are over-saturated. Is there something about JWST that dictates the six-sided spikes or is it just the degree of over-saturation that makes it 6 and not 4 or 8? I guess since the septa in the nuclear medicine collimators are hexagonal that might make the spikes six-sided, but there are literally thousands in one FOV, so maybe not.
It is precisely because gamma ray collimators have hexagonal cells that you see hexagonal diffraction spikes in gamma ray imagery. It does not matter whether you have a single hexagonal aperture, 18 hexagonal apertures, or a thousand hexagonal aperture. Other than the amount of energy that ends up in the diffraction spikes, the geometry of those spikes will be the same.
Thanks, Chris. The science/math part of my brain said that, but then I doubted myself because of the size of the individual units in the collimator "honeycomb" and quantity of the cells. But what gives JWST 6-sided spikes? Is it a function of the 18 mirrors /3?.

User avatar
VictorBorun
Captain
Posts: 1136
Joined: Fri Oct 16, 2020 10:25 pm
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by VictorBorun » Sat Mar 18, 2023 4:48 pm

Chris Peterson wrote: Sat Mar 18, 2023 2:16 pm
Ann wrote: Sat Mar 18, 2023 11:03 am
VictorBorun wrote: Sat Mar 18, 2023 9:06 am

Are they really different symbols?
empty set (U+2205)

You are right, they are different.

Ann
diameter sign (U+2300)
latin capital letter o with stroke (U+00D8) Ø
In terms of physical font, they may well be graphically identical. In terms of logical characters, they are defined differently, which makes sense when you consider things like screen readers for the blind or network scanners constructing search indexes.
ImageIn physical terms the Einstein ring here is round while the letter Ø has height > width
Diameter sign ⌀ and empty set ∅ are harder to tell apart.
Is it just me or does the galaxy disk extend more 1 o'clock than 7 o'clock from its core?
Then again there is light pollution from the foreground stars eating the 7 o'clock part.
Suggesting greek letters Φϕ … oh no, those, too, can be equitailed

On the second look there seems to be a black foreground line crossing the Einstein ring along the galaxy disk… Or is the galaxy disk in fact just a gravi-lens artifact?

User avatar
AVAO
Commander
Posts: 789
Joined: Tue May 28, 2019 12:24 pm
AKA: multiwavelength traveller
Location: Zurich, Switzerland

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by AVAO » Sat Mar 18, 2023 5:54 pm

APOD Robot wrote: Sat Mar 18, 2023 4:06 am Image Wolf-Rayet 124
I also like geck's version

Image
biggg:https://live.staticflickr.com/65535/527 ... 8fae_o.png
Credit: NASA/ESA/CSA/ Judy Schmidt

Comment "This version of WR 124 is a combination of Hubble and JWST MIRI data. A press release recently featured the same data, and since this is one of my favorite objects, of course I had to have a go at it. The official release from the ERO team was a little bit dark. I also went ahead and used the same G'MIC processing to remove much of the banding noise from the dark parts of the image, allowing me to make it even brighter."

Red: JWST/MIRI F1800W
Yellow: JWST/MIRI F1280W
Yellow-Green: JWST/MIRI F1130W
Cyan: JWST/MIRI F770W
Blue: HST WF/PC2 F656N

User avatar
Chris Peterson
Abominable Snowman
Posts: 18599
Joined: Wed Jan 31, 2007 11:13 pm
Location: Guffey, Colorado, USA
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Chris Peterson » Sat Mar 18, 2023 7:06 pm

VictorBorun wrote: Sat Mar 18, 2023 4:48 pm
Chris Peterson wrote: Sat Mar 18, 2023 2:16 pm
In terms of physical font, they may well be graphically identical. In terms of logical characters, they are defined differently, which makes sense when you consider things like screen readers for the blind or network scanners constructing search indexes.
ImageIn physical terms the Einstein ring here is round while the letter Ø has height > width
Diameter sign ⌀ and empty set ∅ are harder to tell apart.
Is it just me or does the galaxy disk extend more 1 o'clock than 7 o'clock from its core?
Then again there is light pollution from the foreground stars eating the 7 o'clock part.
Suggesting greek letters Φϕ … oh no, those, too, can be equitailed
Any of these characters can have any aspect ratio, tall, wide, whatever. That's a decision by the font designer, not something intrinsic to the logical character in any way. They can be graphically identical to each other, or designed to look very different. A matter of aesthetics only.
Chris

*****************************************
Chris L Peterson
Cloudbait Observatory
https://www.cloudbait.com

User avatar
Chris Peterson
Abominable Snowman
Posts: 18599
Joined: Wed Jan 31, 2007 11:13 pm
Location: Guffey, Colorado, USA
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Chris Peterson » Sat Mar 18, 2023 7:13 pm

eljayhalflife wrote: Sat Mar 18, 2023 4:23 pm
Chris Peterson wrote: Sat Mar 18, 2023 2:12 pm
eljayhalflife wrote: Sat Mar 18, 2023 4:56 am I was in nuclear medicine for 25 years. Our cameras have no mirrors (or lenses, unless you count lead collimation), but we regularly see six-sided diffraction spikes in the images when the detectors are over-saturated. Is there something about JWST that dictates the six-sided spikes or is it just the degree of over-saturation that makes it 6 and not 4 or 8? I guess since the septa in the nuclear medicine collimators are hexagonal that might make the spikes six-sided, but there are literally thousands in one FOV, so maybe not.
It is precisely because gamma ray collimators have hexagonal cells that you see hexagonal diffraction spikes in gamma ray imagery. It does not matter whether you have a single hexagonal aperture, 18 hexagonal apertures, or a thousand hexagonal aperture. Other than the amount of energy that ends up in the diffraction spikes, the geometry of those spikes will be the same.
Thanks, Chris. The science/math part of my brain said that, but then I doubted myself because of the size of the individual units in the collimator "honeycomb" and quantity of the cells. But what gives JWST 6-sided spikes? One would think 8 or 16 because of the 16 mirrors.
Diffraction is produced by edges. A circular aperture produces a diffraction pattern made up of rings around bright sources. Straight edges produce lines that are perpendicular to the angle of the edge. It doesn't matter how many edges there are, only how many different angles there are. Whether you have a single hexagonal aperture, or 18 edge-aligned hexagons, or a 1000 hole honeycomb, there are only six angles, meaning only six diffraction spikes. (Actually, each edge produces a pair of spikes, one in each direction, so six edge directions produces 12 spikes... but since they overlap each other, we only see 6.)
Chris

*****************************************
Chris L Peterson
Cloudbait Observatory
https://www.cloudbait.com

User avatar
VictorBorun
Captain
Posts: 1136
Joined: Fri Oct 16, 2020 10:25 pm
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by VictorBorun » Sat Mar 18, 2023 10:33 pm

Chris Peterson wrote: Sat Mar 18, 2023 7:13 pm
eljayhalflife wrote: Sat Mar 18, 2023 4:23 pm
Chris Peterson wrote: Sat Mar 18, 2023 2:12 pm

It is precisely because gamma ray collimators have hexagonal cells that you see hexagonal diffraction spikes in gamma ray imagery. It does not matter whether you have a single hexagonal aperture, 18 hexagonal apertures, or a thousand hexagonal aperture. Other than the amount of energy that ends up in the diffraction spikes, the geometry of those spikes will be the same.
Thanks, Chris. The science/math part of my brain said that, but then I doubted myself because of the size of the individual units in the collimator "honeycomb" and quantity of the cells. But what gives JWST 6-sided spikes? One would think 8 or 16 because of the 16 mirrors.
Diffraction is produced by edges. A circular aperture produces a diffraction pattern made up of rings around bright sources. Straight edges produce lines that are perpendicular to the angle of the edge. It doesn't matter how many edges there are, only how many different angles there are. Whether you have a single hexagonal aperture, or 18 edge-aligned hexagons, or a 1000 hole honeycomb, there are only six angles, meaning only six diffraction spikes. (Actually, each edge produces a pair of spikes, one in each direction, so six edge directions produces 12 spikes... but since they overlap each other, we only see 6.)
what, a 7-gonal mirror would give 14 spikes to a bright star?

User avatar
Chris Peterson
Abominable Snowman
Posts: 18599
Joined: Wed Jan 31, 2007 11:13 pm
Location: Guffey, Colorado, USA
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by Chris Peterson » Sun Mar 19, 2023 1:47 am

VictorBorun wrote: Sat Mar 18, 2023 10:33 pm
Chris Peterson wrote: Sat Mar 18, 2023 7:13 pm
eljayhalflife wrote: Sat Mar 18, 2023 4:23 pm

Thanks, Chris. The science/math part of my brain said that, but then I doubted myself because of the size of the individual units in the collimator "honeycomb" and quantity of the cells. But what gives JWST 6-sided spikes? One would think 8 or 16 because of the 16 mirrors.
Diffraction is produced by edges. A circular aperture produces a diffraction pattern made up of rings around bright sources. Straight edges produce lines that are perpendicular to the angle of the edge. It doesn't matter how many edges there are, only how many different angles there are. Whether you have a single hexagonal aperture, or 18 edge-aligned hexagons, or a 1000 hole honeycomb, there are only six angles, meaning only six diffraction spikes. (Actually, each edge produces a pair of spikes, one in each direction, so six edge directions produces 12 spikes... but since they overlap each other, we only see 6.)
what, a 7-gonal mirror would give 14 spikes to a bright star?
Yup. An even number of edges will produce the same number of spikes as edges. An odd number will produce twice the number as edges. You'll see it on some APODs taken with ordinary camera lenses. The most common lens irises are made with 9 leaves, and you'll see 18 spikes around bright light sources. See for instance this from last month: https://apod.nasa.gov/apod/ap230213.html
Chris

*****************************************
Chris L Peterson
Cloudbait Observatory
https://www.cloudbait.com

User avatar
VictorBorun
Captain
Posts: 1136
Joined: Fri Oct 16, 2020 10:25 pm
Contact:

Re: APOD: Wolf-Rayet 124 (2023 Mar 18)

Post by VictorBorun » Sun Mar 19, 2023 3:26 am

AVAO wrote: Sat Mar 18, 2023 5:54 pm
APOD Robot wrote: Sat Mar 18, 2023 4:06 am Image Wolf-Rayet 124
I also like geck's version

Image
biggg:https://live.staticflickr.com/65535/527 ... 8fae_o.png
Credit: NASA/ESA/CSA/ Judy Schmidt

Comment "This version of WR 124 is a combination of Hubble and JWST MIRI data. A press release recently featured the same data, and since this is one of my favorite objects, of course I had to have a go at it. The official release from the ERO team was a little bit dark. I also went ahead and used the same G'MIC processing to remove much of the banding noise from the dark parts of the image, allowing me to make it even brighter."

Red: JWST/MIRI F1800W
Yellow: JWST/MIRI F1280W
Yellow-Green: JWST/MIRI F1130W
Cyan: JWST/MIRI F770W
Blue: HST WF/PC2 F656N
I think got what visually flattened the cloud in APOD-posted NIRCAM+MIRI: of course, the 2-folded use of RGB to present NIRCAM's range and MIRI's range.
When you use a monotonic mapping, the cloud gets a 3d look ok.
And it looks 3d as well in MIRI range only (Blue: F090W + F150W + F770W, Green: F210M + F335M+ F1130W, Red: F444W + F470N + F1280W + F1800W):
Image
And it looks 3d as well in the visual range:
Image

Post Reply