https://en.wikipedia.org/wiki/Ionosphere wrote:
<<The ionosphere is the ionized part of Earth's upper atmosphere, from about 48 km to 965 km altitude, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. At night the F layer is the only layer of significant ionization present, while the ionization in the E and D layers is extremely low. During the day, the D and E layers become much more heavily ionized, as does the F layer, which develops an additional, weaker region of ionisation known as the F1 layer. The F2 layer persists by day and night and is the main region responsible for the refraction and reflection of radio waves.
As early as 1839, the German mathematician and physicist Carl Friedrich Gauss postulated that an electrically conducting region of the atmosphere could account for observed variations of Earth's magnetic field. Sixty years later, Guglielmo Marconi received the first trans-Atlantic radio signal on December 12, 1901, in St. John's, Newfoundland using a 500 ft kite-supported antenna for reception. The transmitting station in Poldhu, Cornwall, used a spark-gap transmitter to produce a signal with a frequency of approximately
500 kHz [requiring ionospheric electron plasma densities > ~3,000 cm−3] and a power of 100 times more than any radio signal previously produced. The message received was three dits, the Morse code for the letter S. To reach Newfoundland the signal would have to bounce off the ionosphere twice. Marconi achieved transatlantic wireless communications in Glace Bay, Nova Scotia, one year later.
In 1902, Oliver Heaviside proposed the existence of the Kennelly–Heaviside layer of the ionosphere which bears his name. Heaviside's proposal included means by which radio signals are transmitted around the Earth's curvature. Heaviside's proposal, coupled with Planck's law of black-body radiation, may have hampered the growth of radio astronomy for the detection of electromagnetic waves from celestial bodies until 1932 (and the development of high-frequency radio transceivers). Also in 1902, Arthur Edwin Kennelly discovered some of the ionosphere's radio-electrical properties:
The critical frequency is the limiting frequency at or below which a radio wave is reflected by an ionospheric layer at vertical incidence. If the transmitted frequency is higher than the plasma frequency of the ionosphere, then the electrons cannot respond fast enough, and they are not able to re-radiate the signal. It is calculated as shown below:
- Electron plasma critical frequency = sqrt{N} x 9kHZ (where N = electron density per cm3).
Objects in the Solar System that have appreciable atmospheres (i.e., all of the major planets and many of the larger natural satellites) generally produce ionospheres. Planets known to have ionospheres include Venus, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. The atmosphere of Titan includes an ionosphere that ranges from about 880 km to 1,300 km in altitude and contains carbon compounds. Ionospheres have also been observed at Io, Europa, Ganymede, and Triton.>>