https://en.wikipedia.org/wiki/67P/Churyumov%E2%80%93Gerasimenko wrote:
Alternative Jupiter-family comet Churyumov–Gerasimenko was the eventual
destination of the delayed ROSETTA mission, launched on 2 March 2004.
<<The composition of water vapor from Churyumov–Gerasimenko, as determined by the Rosetta spacecraft, is substantially different from that found on Earth. The ratio of deuterium to hydrogen in the water from the comet was determined to be three times that found for terrestrial water. This makes it unlikely that water found on Earth came from comets such as Churyumov–Gerasimenko. On 22 January 2015, NASA reported that, between June and August 2014, the comet released increasing amounts of water vapor, up to tenfold as much.
The ALICE spectrograph on Rosetta determined that electrons (within 1 km (0.6 mi) above the comet nucleus) produced from photoionization of water molecules by solar radiation, and not photons from the Sun as thought earlier, are responsible for the degradation of water and carbon dioxide molecules released from the comet nucleus into its coma.
Measurements by the COSAC and Ptolemy instruments on the Philae's lander revealed sixteen organic compounds, four of which were seen for the first time on a comet, including acetamide, acetone, methyl isocyanate and propionaldehyde. The only amino acid detected thus far on the comet is glycine, along with precursor molecules methylamine and ethylamine.
Solid organic compounds were also found in the dust particles emitted by the comet; the carbon in this organic material is bound in "very large macromolecular compounds", analogous to the insoluble organic matter in carbonaceous chondrite meteorites. Scientists think that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before or after being incorporated into the comet.
One of the most outstanding discoveries of the mission so far is the detection of large amounts of free molecular oxygen (O
2) gas surrounding the comet. Current solar system models suggest the molecular oxygen should have disappeared by the time 67P was created, about 4.6 billion years ago in a violent and hot process that would have caused the oxygen to react with hydrogen and form water. Molecular oxygen has never before been detected in cometary comas. In situ measurements indicate that the O
2/H
2O ratio is isotropic in the coma and does not change systematically with heliocentric distance, suggesting that primordial O
2 was incorporated into the nucleus during the comet's formation. Detection of molecular nitrogen (N
2) in the comet suggests that its cometary grains formed in low-temperature conditions below 30 K.
On 3 July 2018, researchers reported that molecular oxygen is not made on the surface of comet 67P, a finding that supports the notion that the oxygen comes from the body of the comet, and may be primordial.>>