http://en.wikipedia.org/wiki/Mach%27s_principle wrote:
<<Mach's principle (or Mach's conjecture) is the name given by Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The idea is that the local motion of a rotating reference frame is determined by the large scale distribution of matter, as exemplified by this anecdote:
"You are standing in a field looking at the stars. Your arms are resting freely at your side, and you see that the distant stars are not moving. Now start spinning. The stars are whirling around you and your arms are pulled away from your body. Why should your arms be pulled away when the stars are whirling? Why should they be dangling freely when the stars don't move?"
Mach's principle says that this is not a coincidence—that there is a physical law that relates the motion of the distant stars to the local inertial frame. If you see all the stars whirling around you, Mach suggests that there is some physical law which would make it so you would feel a centrifugal force. There are a number of rival formulations of the principle. It is often stated in vague ways, like "mass out there influences inertia here". A very general statement of Mach's principle is "Local physical laws are determined by the large-scale structure of the universe." The basic idea also appears before Mach's time, in the writings of George Berkeley.
Newton tried to demonstrate that one can always decide if one is rotating with respect to the absolute space, measuring the apparent forces that arise only when an absolute rotation is performed. If a bucket is filled with water, and made to rotate, initially the water remains still, but then, gradually, the walls of the vessel communicate their motion to the water, making it curve and climb up the borders of the bucket, because of the centrifugal forces produced by the rotation. Newton says that this thought experiment demonstrates that the centrifugal forces arise only when the water is in rotation with respect to the absolute space (represented here by the earth's reference frame, or better, the distant stars); instead, when the bucket was rotating with respect to the water no centrifugal forces were produced, this indicating that the latter was still with respect to the absolute space. “
Ernst Mach debunked this notion of absolute space and argued that the inertia existed because the water was spinning relative to the rest of the matter in the universe. Indeed, the same effects would be observed if the bucket was still and the rest of the universe was rotating around it, he said.”
This concept was a guiding factor in Einstein's development of the general theory of relativity. Einstein realized that the overall distribution of matter would determine the metric tensor, which tells you which frame is rotationally stationary. Frame dragging and conservation of gravitational angular momentum makes this into a true statement in the general theory in certain solutions. But because the principle is so vague, many distinct statements can be (and have been) made which would qualify as a Mach principle, and some of these are false.
The Gödel rotating universe is a solution of the field equations which is designed to disobey Mach's principle in the worst possible way. In this example, the distant stars seem to be revolving faster and faster as one moves further away. This example doesn't completely settle the question, because it has closed timelike curves.
Most physicists believe Mach's principle was never developed into a quantitative physical theory that would explain a mechanism by which the stars can have such an effect. Although Einstein was intrigued and inspired by Mach's principle, Einstein's formulation of the principle is not a fundamental assumption of general relativity. There have been attempts to formulate a theory which is more fully Machian, such as Brans–Dicke theory, but most physicists argue that none have been fully successful.>>