by neufer » Wed Apr 02, 2008 11:30 pm
jcbaty wrote:One thing I've always wondered is how the stars in these dense clusters keep from combining and creating one gigantic star, since they are so close to each other. It seems like over time, their gravity would draw them crashing together.
Globular cluster
http://en.wikipedia.org/wiki/Globular_cluster
-----------------------------------------------
<<Globular clusters have a very high star density, and therefore close interactions and near-collisions of stars occur relatively often. Due to these chance encounters, some exotic classes of stars, such as blue stragglers, millisecond pulsars and low-mass X-ray binaries, are much more common in globular clusters. A blue straggler is formed from the merger of two stars, possibly as a result of an encounter with a binary system. The resulting star has a higher temperature than comparable stars in the cluster with the same luminosity, and thus differs from the main sequence stars.
Astronomers have searched for black holes within globular clusters since the 1970s. The resolution requirements for this task, however, are exacting, and it is only with the Hubble space telescope that the first confirmed discoveries have been made. In independent programs, a 4,000 solar mass intermediate-mass black hole has been suggested to exist based on HST observations in the globular cluster M15 and a 20,000 solar mass black hole in the Mayall II cluster in the Andromeda Galaxy. Both x-ray and radio emissions from Mayall II appear to be consistent with an intermediate-mass black hole.
These are of particular interest because they are the first black holes discovered that were intermediate in mass between the conventional stellar-mass black hole and the supermassive black holes discovered at the cores of galaxies. The mass of these intermediate mass black holes is proportional to the mass of the clusters, following a pattern previously discovered between supermassive black holes and their surrounding galaxies.
Claims of intermediate mass black holes have been met with some skepticism. The densest objects in globular clusters are expected to migrate to the cluster center due to mass segregation. These will be white dwarfs and neutron stars in an old stellar population like a globular cluster. As pointed out in two papers by Holger Baumgardt and collaborators, the mass-to-light ratio should rise sharply towards the center of the cluster, even without a black hole, in both M15 and Mayall II>>
-----------------------------------------------
<<The results of N-body simulations have shown that the stars can follow unusual paths through the cluster, often forming loops and often falling more directly toward the core than would a single star orbiting a central mass. In addition, due to interactions with other stars that result in an increase in velocity, some of the stars gain sufficient energy to escape the cluster. Over long periods of time this will result in a dissipation of the cluster, a process termed evaporation. The typical time scale for the evaporation of a globular cluster is 10^10 years.
Binary stars form a significant portion of the total population of stellar systems, with up to half of all stars occurring in binary systems. Numerical simulations of globular clusters have demonstrated that binaries can hinder and even reverse the process of core collapse in globular clusters. When a star in a cluster has a gravitational encounter with a binary system, a possible result is that the binary becomes more tightly bound and kinetic energy is added to the solitary star. When the massive stars in the cluster are sped up by this process, it reduces the contraction at the core and limits core collapse>>
-----------------------------------------------
[quote="jcbaty"]One thing I've always wondered is how the stars in these dense clusters keep from combining and creating one gigantic star, since they are so close to each other. It seems like over time, their gravity would draw them crashing together.[/quote]
Globular cluster
http://en.wikipedia.org/wiki/Globular_cluster
-----------------------------------------------
<<Globular clusters have a very high star density, and therefore close interactions and near-collisions of stars occur relatively often. Due to these chance encounters, some exotic classes of stars, such as blue stragglers, millisecond pulsars and low-mass X-ray binaries, are much more common in globular clusters. A blue straggler is formed from the merger of two stars, possibly as a result of an encounter with a binary system. The resulting star has a higher temperature than comparable stars in the cluster with the same luminosity, and thus differs from the main sequence stars.
Astronomers have searched for black holes within globular clusters since the 1970s. The resolution requirements for this task, however, are exacting, and it is only with the Hubble space telescope that the first confirmed discoveries have been made. In independent programs, a 4,000 solar mass intermediate-mass black hole has been suggested to exist based on HST observations in the globular cluster M15 and a 20,000 solar mass black hole in the Mayall II cluster in the Andromeda Galaxy. Both x-ray and radio emissions from Mayall II appear to be consistent with an intermediate-mass black hole.
These are of particular interest because they are the first black holes discovered that were intermediate in mass between the conventional stellar-mass black hole and the supermassive black holes discovered at the cores of galaxies. The mass of these intermediate mass black holes is proportional to the mass of the clusters, following a pattern previously discovered between supermassive black holes and their surrounding galaxies.
Claims of intermediate mass black holes have been met with some skepticism. The densest objects in globular clusters are expected to migrate to the cluster center due to mass segregation. These will be white dwarfs and neutron stars in an old stellar population like a globular cluster. As pointed out in two papers by Holger Baumgardt and collaborators, the mass-to-light ratio should rise sharply towards the center of the cluster, even without a black hole, in both M15 and Mayall II>>
-----------------------------------------------
<<The results of N-body simulations have shown that the stars can follow unusual paths through the cluster, often forming loops and often falling more directly toward the core than would a single star orbiting a central mass. In addition, due to interactions with other stars that result in an increase in velocity, some of the stars gain sufficient energy to escape the cluster. Over long periods of time this will result in a dissipation of the cluster, a process termed evaporation. The typical time scale for the evaporation of a globular cluster is 10^10 years.
Binary stars form a significant portion of the total population of stellar systems, with up to half of all stars occurring in binary systems. Numerical simulations of globular clusters have demonstrated that binaries can hinder and even reverse the process of core collapse in globular clusters. When a star in a cluster has a gravitational encounter with a binary system, a possible result is that the binary becomes more tightly bound and kinetic energy is added to the solitary star. When the massive stars in the cluster are sped up by this process, it reduces the contraction at the core and limits core collapse>>
-----------------------------------------------