APOD: Thor's Helmet (2024 Jan 09)

Post a reply


This question is a means of preventing automated form submissions by spambots.
Smilies
:D :) :ssmile: :( :o :shock: :? 8-) :lol2: :x :P :oops: :cry: :evil: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
View more smilies

BBCode is ON
[img] is ON
[url] is ON
Smilies are ON

Topic review
   

Expand view Topic review: APOD: Thor's Helmet (2024 Jan 09)

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Sat Jan 20, 2024 2:47 pm

JimB wrote: ↑Sat Jan 20, 2024 10:02 am
Chris Peterson wrote: ↑Thu Jan 11, 2024 1:51 pm
JimB wrote: ↑Thu Jan 11, 2024 9:09 am

I really have to query this. The bigger the telescope aperture, the fainter the objects that you will be able to observe. An 8 inch diameter mirror will have almost twice the light gathering power as a 6 inch mirror, so if the same magnification is used on both then the image will be brighter with the 8 inch telescope.
Question: why not make a 1-meter diameter telescope with a 1-meter focal length, and use it with an eyepiece having a 1-meter focal length. That would have a magnification of one. It should let us view the sky as with our eyes, but hundreds of times brighter, right?
In theory, yes. But there are practical limitations. As the focal length is reduced, there are serious problems with focusing the light to avoid distortions. There are also limits on the ratio between the focal length of the eyepiece and the telescope mirror. Typical telescopes for viewing faint objects would have f/5, so a 1 meter telescope would have a 5 meter focal length and typical magnification of 10 times - so still much brighter that with the naked eye. If you are tempted to go to a higher magnification to get a closer look, then the brightness of the image will be reduced.
No. In theory no. It's not a practical problem, it's pure physics. You can never increase the brightness more than what you can see with the unaided eye. The limiting pupil in the system is the entrance pupil of your eye.

Re: APOD: Thor's Helmet (2024 Jan 09)

by JimB » Sat Jan 20, 2024 10:02 am

Chris Peterson wrote: ↑Thu Jan 11, 2024 1:51 pm
JimB wrote: ↑Thu Jan 11, 2024 9:09 am
Chris Peterson wrote: ↑Wed Jan 10, 2024 6:00 pm I'm saying that every (extended) object that is bright enough to see visually through a telescope eyepiece is bright enough to see with the naked eye. All a telescope can do is make it bigger, not brighter. Bigger can make it more visible because more of the retina is involved... but that is exactly what happens when you get closer, as well.
I really have to query this. The bigger the telescope aperture, the fainter the objects that you will be able to observe. An 8 inch diameter mirror will have almost twice the light gathering power as a 6 inch mirror, so if the same magnification is used on both then the image will be brighter with the 8 inch telescope.
Question: why not make a 1-meter diameter telescope with a 1-meter focal length, and use it with an eyepiece having a 1-meter focal length. That would have a magnification of one. It should let us view the sky as with our eyes, but hundreds of times brighter, right?
In theory, yes. But there are practical limitations. As the focal length is reduced, there are serious problems with focusing the light to avoid distortions. There are also limits on the ratio between the focal length of the eyepiece and the telescope mirror. Typical telescopes for viewing faint objects would have f/5, so a 1 meter telescope would have a 5 meter focal length and typical magnification of 10 times - so still much brighter that with the naked eye. If you are tempted to go to a higher magnification to get a closer look, then the brightness of the image will be reduced.

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Thu Jan 11, 2024 8:59 pm

Chris Peterson wrote: ↑Thu Jan 11, 2024 7:59 pm
johnnydeep wrote: ↑Thu Jan 11, 2024 7:50 pm
Chris Peterson wrote: ↑Thu Jan 11, 2024 5:59 pm
Surface brightness is flux per unit area. What you're describing is just the flux. A larger aperture captures more photons. But as you increase the magnification, it delivers those photons to a larger area. So while more photons hit your retina, the number in any given area doesn't change. This is the same thing that happens when you get closer to an extended object, as well.
Which would seem to imply that a larger aperture using the same magnification would deliver more photons to your retina than a smaller aperture would, thereby making the image appear brighter, right? I must still be missing something.
More photons to the retina, yes. But not more photons to any fixed area of the retina (like a single rod, for instance). More photons spread over a larger area doesn't result in greater brightness.

We might consider the case of a 100mm aperture and operating at 20 power. Lets take a nice middle-aged pupil size of 5mm. So the area of the aperture is 400 times larger than the native pupil, so collects 400 times more light. But it's spreading the image over 400 times more retina, so the surface brightness is unchanged. The same as naked eye. What if we reduce the aperture to 50mm? Now we've reduced the surface brightness by a factor of four. The image in the scope is four times less bright than the naked eye view. And if we increase the aperture to 200mm? It doesn't get any brighter at all, because now the exit pupil is 10mm, and all that extra light is missing our eye's pupil completely. Trace it backwards, and the column of light entering our 5mm pupil is all coming from the central 100mm of that 200mm objective!
Thank you for your patience! Now I have to read that a few more times.

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Thu Jan 11, 2024 7:59 pm

johnnydeep wrote: ↑Thu Jan 11, 2024 7:50 pm
Chris Peterson wrote: ↑Thu Jan 11, 2024 5:59 pm
johnnydeep wrote: ↑Thu Jan 11, 2024 5:45 pm

Ok, let's see. Surface brightness would be the photons per second coming from every point of something being observed, whether extended or point (though I think you've said in the past that there are no true point sources). So clearly the photons/sec won't change depending on the aperture of the objective. That I understand. But, there are other subtleties in your explanation that aren't totally clear to me...yet.
Surface brightness is flux per unit area. What you're describing is just the flux. A larger aperture captures more photons. But as you increase the magnification, it delivers those photons to a larger area. So while more photons hit your retina, the number in any given area doesn't change. This is the same thing that happens when you get closer to an extended object, as well.
Which would seem to imply that a larger aperture using the same magnification would deliver more photons to your retina than a smaller aperture would, thereby making the image appear brighter, right? I must still be missing something.
More photons to the retina, yes. But not more photons to any fixed area of the retina (like a single rod, for instance). More photons spread over a larger area doesn't result in greater brightness.

We might consider the case of a 100mm aperture and operating at 20 power. Lets take a nice middle-aged pupil size of 5mm. So the area of the aperture is 400 times larger than the native pupil, so collects 400 times more light. But it's spreading the image over 400 times more retina, so the surface brightness is unchanged. The same as naked eye. What if we reduce the aperture to 50mm? Now we've reduced the surface brightness by a factor of four. The image in the scope is four times less bright than the naked eye view. And if we increase the aperture to 200mm? It doesn't get any brighter at all, because now the exit pupil is 10mm, and all that extra light is missing our eye's pupil completely. Trace it backwards, and the column of light entering our 5mm pupil is all coming from the central 100mm of that 200mm objective!

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Thu Jan 11, 2024 7:50 pm

Chris Peterson wrote: ↑Thu Jan 11, 2024 5:59 pm
johnnydeep wrote: ↑Thu Jan 11, 2024 5:45 pm
Chris Peterson wrote: ↑Thu Jan 11, 2024 5:11 pm
As you increase the aperture, you can operate at higher magnifications, which generally let us see more detail even though the surface brightness is the same (or usually a little less) than we would have with our eyes alone. And for any given magnification, there is a point where increasing the aperture makes no difference at all.
Ok, let's see. Surface brightness would be the photons per second coming from every point of something being observed, whether extended or point (though I think you've said in the past that there are no true point sources). So clearly the photons/sec won't change depending on the aperture of the objective. That I understand. But, there are other subtleties in your explanation that aren't totally clear to me...yet.
Surface brightness is flux per unit area. What you're describing is just the flux. A larger aperture captures more photons. But as you increase the magnification, it delivers those photons to a larger area. So while more photons hit your retina, the number in any given area doesn't change. This is the same thing that happens when you get closer to an extended object, as well.
Which would seem to imply that a larger aperture using the same magnification would deliver more photons to your retina than a smaller aperture would, thereby making the image appear brighter, right? I must still be missing something.

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Thu Jan 11, 2024 5:59 pm

johnnydeep wrote: ↑Thu Jan 11, 2024 5:45 pm
Chris Peterson wrote: ↑Thu Jan 11, 2024 5:11 pm
johnnydeep wrote: ↑Thu Jan 11, 2024 5:09 pm

So why do visual astronomers looking though an eyepiece prefer larger aperture telescopes? Are they not the proverbial "bigger light buckets"? Is this all about the difference between "diffuse extended light sources" and "point sources"?
As you increase the aperture, you can operate at higher magnifications, which generally let us see more detail even though the surface brightness is the same (or usually a little less) than we would have with our eyes alone. And for any given magnification, there is a point where increasing the aperture makes no difference at all.
Ok, let's see. Surface brightness would be the photons per second coming from every point of something being observed, whether extended or point (though I think you've said in the past that there are no true point sources). So clearly the photons/sec won't change depending on the aperture of the objective. That I understand. But, there are other subtleties in your explanation that aren't totally clear to me...yet.
Surface brightness is flux per unit area. What you're describing is just the flux. A larger aperture captures more photons. But as you increase the magnification, it delivers those photons to a larger area. So while more photons hit your retina, the number in any given area doesn't change. This is the same thing that happens when you get closer to an extended object, as well.

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Thu Jan 11, 2024 5:45 pm

Chris Peterson wrote: ↑Thu Jan 11, 2024 5:11 pm
johnnydeep wrote: ↑Thu Jan 11, 2024 5:09 pm
Chris Peterson wrote: ↑Thu Jan 11, 2024 1:51 pm
Question: why not make a 1-meter diameter telescope with a 1-meter focal length, and use it with an eyepiece having a 1-meter focal length. That would have a magnification of one. It should let us view the sky as with our eyes, but hundreds of times brighter, right?
So why do visual astronomers looking though an eyepiece prefer larger aperture telescopes? Are they not the proverbial "bigger light buckets"? Is this all about the difference between "diffuse extended light sources" and "point sources"?
As you increase the aperture, you can operate at higher magnifications, which generally let us see more detail even though the surface brightness is the same (or usually a little less) than we would have with our eyes alone. And for any given magnification, there is a point where increasing the aperture makes no difference at all.
Ok, let's see. Surface brightness would be the photons per second coming from every point of something being observed, whether extended or point (though I think you've said in the past that there are no true point sources). So clearly the photons/sec won't change depending on the aperture of the objective. That I understand. But, there are other subtleties in your explanation that aren't totally clear to me...yet.

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Thu Jan 11, 2024 5:11 pm

johnnydeep wrote: ↑Thu Jan 11, 2024 5:09 pm
Chris Peterson wrote: ↑Thu Jan 11, 2024 1:51 pm
JimB wrote: ↑Thu Jan 11, 2024 9:09 am

I really have to query this. The bigger the telescope aperture, the fainter the objects that you will be able to observe. An 8 inch diameter mirror will have almost twice the light gathering power as a 6 inch mirror, so if the same magnification is used on both then the image will be brighter with the 8 inch telescope.
Question: why not make a 1-meter diameter telescope with a 1-meter focal length, and use it with an eyepiece having a 1-meter focal length. That would have a magnification of one. It should let us view the sky as with our eyes, but hundreds of times brighter, right?
So why do visual astronomers looking though an eyepiece prefer larger aperture telescopes? Are they not the proverbial "bigger light buckets"? Is this all about the difference between "diffuse extended light sources" and "point sources"?
As you increase the aperture, you can operate at higher magnifications, which generally let us see more detail even though the surface brightness is the same (or usually a little less) than we would have with our eyes alone. And for any given magnification, there is a point where increasing the aperture makes no difference at all.

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Thu Jan 11, 2024 5:09 pm

Chris Peterson wrote: ↑Thu Jan 11, 2024 1:51 pm
JimB wrote: ↑Thu Jan 11, 2024 9:09 am
Chris Peterson wrote: ↑Wed Jan 10, 2024 6:00 pm I'm saying that every (extended) object that is bright enough to see visually through a telescope eyepiece is bright enough to see with the naked eye. All a telescope can do is make it bigger, not brighter. Bigger can make it more visible because more of the retina is involved... but that is exactly what happens when you get closer, as well.
I really have to query this. The bigger the telescope aperture, the fainter the objects that you will be able to observe. An 8 inch diameter mirror will have almost twice the light gathering power as a 6 inch mirror, so if the same magnification is used on both then the image will be brighter with the 8 inch telescope.
Question: why not make a 1-meter diameter telescope with a 1-meter focal length, and use it with an eyepiece having a 1-meter focal length. That would have a magnification of one. It should let us view the sky as with our eyes, but hundreds of times brighter, right?
So why do visual astronomers looking though an eyepiece prefer larger aperture telescopes? Are they not the proverbial "bigger light buckets"? Is this all about the difference between "diffuse extended light sources" and "point sources"?

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Thu Jan 11, 2024 5:04 pm

Chris Peterson wrote: ↑Thu Jan 11, 2024 2:11 am
johnnydeep wrote: ↑Wed Jan 10, 2024 7:50 pm
Chris Peterson wrote: ↑Wed Jan 10, 2024 7:44 pm
And if we're being very technical, that system with the camera isn't even using a telescope in the optical sense. A telescope requires an objective and an ocular, and is classified as an afocal system. One that has no focus. A camera on a "telescope" is just an objective, which brings an image to focus on the camera sensor.
Hmm. So what would "using a telescope in the optical sense" mean? Does that only happen when you use your eye to look through the eyepiece? And if so, why? Just because your eye's lens is used to focus the incoming (already) parallel light rays?
Exactly. At its most formal, a telescope is an afocal optical system. Your eye is a focal optical system, and that's what brings the image to focus. Of course, in practical usage "telescope" has come to mean "big tube with lenses and/or mirrors used to examine astronomical objects... even if it's just a single objective. (And I'm not arguing against that usage, just pointing out an interesting technicality.)
Ok, thanks.

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Thu Jan 11, 2024 1:51 pm

JimB wrote: ↑Thu Jan 11, 2024 9:09 am
Chris Peterson wrote: ↑Wed Jan 10, 2024 6:00 pm I'm saying that every (extended) object that is bright enough to see visually through a telescope eyepiece is bright enough to see with the naked eye. All a telescope can do is make it bigger, not brighter. Bigger can make it more visible because more of the retina is involved... but that is exactly what happens when you get closer, as well.
I really have to query this. The bigger the telescope aperture, the fainter the objects that you will be able to observe. An 8 inch diameter mirror will have almost twice the light gathering power as a 6 inch mirror, so if the same magnification is used on both then the image will be brighter with the 8 inch telescope.
Question: why not make a 1-meter diameter telescope with a 1-meter focal length, and use it with an eyepiece having a 1-meter focal length. That would have a magnification of one. It should let us view the sky as with our eyes, but hundreds of times brighter, right?

Re: APOD: Thor's Helmet (2024 Jan 09)

by JimB » Thu Jan 11, 2024 9:09 am

Chris Peterson wrote: ↑Wed Jan 10, 2024 6:00 pm I'm saying that every (extended) object that is bright enough to see visually through a telescope eyepiece is bright enough to see with the naked eye. All a telescope can do is make it bigger, not brighter. Bigger can make it more visible because more of the retina is involved... but that is exactly what happens when you get closer, as well.
I really have to query this. The bigger the telescope aperture, the fainter the objects that you will be able to observe. An 8 inch diameter mirror will have almost twice the light gathering power as a 6 inch mirror, so if the same magnification is used on both then the image will be brighter with the 8 inch telescope.

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Thu Jan 11, 2024 2:11 am

johnnydeep wrote: ↑Wed Jan 10, 2024 7:50 pm
Chris Peterson wrote: ↑Wed Jan 10, 2024 7:44 pm
johnnydeep wrote: ↑Wed Jan 10, 2024 7:41 pm

Oh, I see where I misinterpreted you! I was thinking of a telescope recording an image with a camera, which allows more photons to be detected over time, which is a benefit not available to your eye when it look's though a telescope's eyepiece.
And if we're being very technical, that system with the camera isn't even using a telescope in the optical sense. A telescope requires an objective and an ocular, and is classified as an afocal system. One that has no focus. A camera on a "telescope" is just an objective, which brings an image to focus on the camera sensor.
Hmm. So what would "using a telescope in the optical sense" mean? Does that only happen when you use your eye to look through the eyepiece? And if so, why? Just because your eye's lens is used to focus the incoming (already) parallel light rays?
Exactly. At its most formal, a telescope is an afocal optical system. Your eye is a focal optical system, and that's what brings the image to focus. Of course, in practical usage "telescope" has come to mean "big tube with lenses and/or mirrors used to examine astronomical objects... even if it's just a single objective. (And I'm not arguing against that usage, just pointing out an interesting technicality.)

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Wed Jan 10, 2024 7:50 pm

Chris Peterson wrote: ↑Wed Jan 10, 2024 7:44 pm
johnnydeep wrote: ↑Wed Jan 10, 2024 7:41 pm
Chris Peterson wrote: ↑Wed Jan 10, 2024 6:00 pm

I'm saying that every (extended) object that is bright enough to see visually through a telescope eyepiece is bright enough to see with the naked eye. All a telescope can do is make it bigger, not brighter. Bigger can make it more visible because more of the retina is involved... but that is exactly what happens when you get closer, as well.
Oh, I see where I misinterpreted you! I was thinking of a telescope recording an image with a camera, which allows more photons to be detected over time, which is a benefit not available to your eye when it look's though a telescope's eyepiece.
And if we're being very technical, that system with the camera isn't even using a telescope in the optical sense. A telescope requires an objective and an ocular, and is classified as an afocal system. One that has no focus. A camera on a "telescope" is just an objective, which brings an image to focus on the camera sensor.
Hmm. So what would "using a telescope in the optical sense" mean? Does that only happen when you use your eye to look through the eyepiece? And if so, why? Just because your eye's lens is used to focus the incoming (already) parallel light rays?

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Wed Jan 10, 2024 7:44 pm

johnnydeep wrote: ↑Wed Jan 10, 2024 7:41 pm
Chris Peterson wrote: ↑Wed Jan 10, 2024 6:00 pm
johnnydeep wrote: ↑Wed Jan 10, 2024 5:52 pm

Wait, are you saying that every object that a ground based telescope is able to see is ALSO visible to the naked eye? That can't be right, since some deep sky objects simply don't emit enough photons for our eyes to detect. Yes, the photos enter our eye, but we don't register them due to our eyes' limited sensitivity.
I'm saying that every (extended) object that is bright enough to see visually through a telescope eyepiece is bright enough to see with the naked eye. All a telescope can do is make it bigger, not brighter. Bigger can make it more visible because more of the retina is involved... but that is exactly what happens when you get closer, as well.
Oh, I see where I misinterpreted you! I was thinking of a telescope recording an image with a camera, which allows more photons to be detected over time, which is a benefit not available to your eye when it look's though a telescope's eyepiece.
And if we're being very technical, that system with the camera isn't even using a telescope in the optical sense. A telescope requires an objective and an ocular, and is classified as an afocal system. One that has no focus. A camera on a "telescope" is just an objective, which brings an image to focus on the camera sensor.

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Wed Jan 10, 2024 7:41 pm

Chris Peterson wrote: ↑Wed Jan 10, 2024 6:00 pm
johnnydeep wrote: ↑Wed Jan 10, 2024 5:52 pm
Chris Peterson wrote: ↑Wed Jan 10, 2024 2:33 pm

This object is already visible to the naked eye, or we could not see it in a telescope. Telescopes do not make extended objects brighter, only larger.

At a distance of 60 ly this object to the naked eye would look exactly like it looks through an eyepiece at 250 power on Earth.
Wait, are you saying that every object that a ground based telescope is able to see is ALSO visible to the naked eye? That can't be right, since some deep sky objects simply don't emit enough photons for our eyes to detect. Yes, the photos enter our eye, but we don't register them due to our eyes' limited sensitivity.
I'm saying that every (extended) object that is bright enough to see visually through a telescope eyepiece is bright enough to see with the naked eye. All a telescope can do is make it bigger, not brighter. Bigger can make it more visible because more of the retina is involved... but that is exactly what happens when you get closer, as well.
Oh, I see where I misinterpreted you! I was thinking of a telescope recording an image with a camera, which allows more photons to be detected over time, which is a benefit not available to your eye when it look's though a telescope's eyepiece.

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Wed Jan 10, 2024 6:00 pm

johnnydeep wrote: ↑Wed Jan 10, 2024 5:52 pm
Chris Peterson wrote: ↑Wed Jan 10, 2024 2:33 pm
Holger Nielsen wrote: ↑Wed Jan 10, 2024 8:15 am

I was talking about visibility to the naked eye. I dont't know the magnitude of NGC 2359, but was thinking of it as comparable to the Ring Nebula or the Crab Nebula, which are invisible to the naked eye - at any distance.
This object is already visible to the naked eye, or we could not see it in a telescope. Telescopes do not make extended objects brighter, only larger.

At a distance of 60 ly this object to the naked eye would look exactly like it looks through an eyepiece at 250 power on Earth.
Wait, are you saying that every object that a ground based telescope is able to see is ALSO visible to the naked eye? That can't be right, since some deep sky objects simply don't emit enough photons for our eyes to detect. Yes, the photos enter our eye, but we don't register them due to our eyes' limited sensitivity.
I'm saying that every (extended) object that is bright enough to see visually through a telescope eyepiece is bright enough to see with the naked eye. All a telescope can do is make it bigger, not brighter. Bigger can make it more visible because more of the retina is involved... but that is exactly what happens when you get closer, as well.

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Wed Jan 10, 2024 5:52 pm

Chris Peterson wrote: ↑Wed Jan 10, 2024 2:33 pm
Holger Nielsen wrote: ↑Wed Jan 10, 2024 8:15 am
Chris Peterson wrote: ↑Tue Jan 09, 2024 2:29 pm

It wouldn't be invisible. NGC 2359 is an accessible target for visual astronomers.
I was talking about visibility to the naked eye. I dont't know the magnitude of NGC 2359, but was thinking of it as comparable to the Ring Nebula or the Crab Nebula, which are invisible to the naked eye - at any distance.
This object is already visible to the naked eye, or we could not see it in a telescope. Telescopes do not make extended objects brighter, only larger.

At a distance of 60 ly this object to the naked eye would look exactly like it looks through an eyepiece at 250 power on Earth.
Wait, are you saying that every object that a ground based telescope is able to see is ALSO visible to the naked eye? That can't be right, since some deep sky objects simply don't emit enough photons for our eyes to detect. Yes, the photos enter our eye, but we don't register them due to our eyes' limited sensitivity.

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Wed Jan 10, 2024 2:33 pm

Holger Nielsen wrote: ↑Wed Jan 10, 2024 8:15 am
Chris Peterson wrote: ↑Tue Jan 09, 2024 2:29 pm
Holger Nielsen wrote: ↑Tue Jan 09, 2024 2:13 pm

It would be invisible to the naked eye at any distance. If you move towards it, it also increases its extension in the sky.
It wouldn't be invisible. NGC 2359 is an accessible target for visual astronomers.
I was talking about visibility to the naked eye. I dont't know the magnitude of NGC 2359, but was thinking of it as comparable to the Ring Nebula or the Crab Nebula, which are invisible to the naked eye - at any distance.
This object is already visible to the naked eye, or we could not see it in a telescope. Telescopes do not make extended objects brighter, only larger.

At a distance of 60 ly this object to the naked eye would look exactly like it looks through an eyepiece at 250 power on Earth.

Re: APOD: Thor's Helmet (2024 Jan 09)

by JimB » Wed Jan 10, 2024 9:34 am

joelsantiago wrote: ↑Tue Jan 09, 2024 11:02 am I always have a wonder. How do astronomers capture images of space objects like Thor's Helmet? It's so greatgeometry dash subzero
It's usually done with a digital camera attached to a telescope. The telescope doesn't have to be really big but it does have to be motor driven so that it tracks the target exactly across the sky as the earth rotates.
The night sky on it's own can be pretty impressive if you can find some place where there is no light pollution!

Re: APOD: Thor's Helmet (2024 Jan 09)

by Holger Nielsen » Wed Jan 10, 2024 8:15 am

Chris Peterson wrote: ↑Tue Jan 09, 2024 2:29 pm
Holger Nielsen wrote: ↑Tue Jan 09, 2024 2:13 pm
JimB wrote: ↑Tue Jan 09, 2024 9:51 am If you were 60 light years away from Thor's Helmet, would you be able to see this amazing vista with your own eyes?
It would be invisible to the naked eye at any distance. If you move towards it, it also increases its extension in the sky.
It wouldn't be invisible. NGC 2359 is an accessible target for visual astronomers.
I was talking about visibility to the naked eye. I dont't know the magnitude of NGC 2359, but was thinking of it as comparable to the Ring Nebula or the Crab Nebula, which are invisible to the naked eye - at any distance.

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Tue Jan 09, 2024 7:41 pm

Chris Peterson wrote: ↑Tue Jan 09, 2024 7:16 pm
johnnydeep wrote: ↑Tue Jan 09, 2024 6:49 pm
Chris Peterson wrote: ↑Tue Jan 09, 2024 6:41 pm

Well, that star, 2MASS J07181340-1315288 (Gaia DR3 3032940260440588544) appears to be very cool. No red band flux is available, but in the J band (1200 nm) it is about 16 times brighter than in the G band (464 nm). So the two red filters (H-a and S II) will pass a lot more light than the green filter (O III). I'm not sure what the final mapping used was, but looking at the histogram I'd guess that the blue and green channels are filled from the O III data and the red channel is filled from the H-a and S II data. Which would explain why the star is so red.
Would that also explain why the W-R star - which is not cool at all! - is so red, as well as the bright - foreground? - star in the lower right?
The foreground star, 2MASS J07190568-1315389 is certainly a cool star that is much brighter at the longer wavelengths. So it would explain that.

The W-R star, 2MASS J07182912-1313015 is brighter in the IR than the visible, which may have to do with the effects of dust. (Thermal dust emission is common in W-R nebulas; the presence of dust could cause reddening in optical wavelengths.) Its R and G flux is similar, but maybe twice as much R signal is present because that's coming from two filters, while the green is coming from just one. So much depends on the processing, and the final colors we get from narrowband data can be quite variable.
Thanks! i think I even understood most of that. πŸ˜‰

Re: APOD: Thor's Helmet (2024 Jan 09)

by Ann » Tue Jan 09, 2024 7:29 pm

RandyM wrote: ↑Tue Jan 09, 2024 6:12 pm Thanks for APOD! Why is one star, located above the helmet at the 1 o'clock position and within the wings, so red?
There is a star in this position, HD 57057, which is quite red. Its B-V index is almost +2.0, which is quite red for stars.

HD 57057 long period variable.png

HD 57057 is apparently a giant, very cool, very luminous star. It's very distant too, at some 11,000 light-years away from us. Its V luminosity of 8.77 magnitudes means it's emitting some 3,000 times the light of the Sun in yellow-green light. In infrared light, at a wavelength described as J (I'll let someone else check exactly what wavelength that is), the star is much brighter, some 120,000 times the luminosity of the Sun.

Simbad Astronomical Database described HD 57057 as a long-period variable.
Wikipedia wrote:

Long period variables are pulsating cool giant, or supergiant, variable stars with periods from around a hundred days, or just a few days for OSARGs, to more than a thousand days. In some cases, the variations are too poorly defined to identify a period, although it is an open question whether they are truly non-periodic.[8]

LPVs have spectral class F and redwards, but most are spectral class M, S or C. Many of the reddest stars in the sky, such as Y CVn, V Aql, and VX Sgr are LPVs.

Most LPVs, including all Mira variables, are thermally-pulsing asymptotic giant branch stars with luminosities several thousand times the sun. Some semiregular and irregular variables are less luminous giant stars, while others are more luminous supergiants including some of the largest known stars such as VY CMa.
If many long-period variables are asymtotic giant branch stars, then they are on their last legs before they shed their atmospheres and become planetary nebulas and white dwarfs. These stars are typically both very red and really quite bright.


So we can probably say that HD 57057 is about to die, just like the famous Mira, but it's putting on one final bright red light show before its spectacular death.


Ann

Re: APOD: Thor's Helmet (2024 Jan 09)

by Chris Peterson » Tue Jan 09, 2024 7:16 pm

johnnydeep wrote: ↑Tue Jan 09, 2024 6:49 pm
Chris Peterson wrote: ↑Tue Jan 09, 2024 6:41 pm
RandyM wrote: ↑Tue Jan 09, 2024 6:12 pm Thanks for APOD! Why is one star, located above the helmet at the 1 o'clock position and within the wings, so red?
Well, that star, 2MASS J07181340-1315288 (Gaia DR3 3032940260440588544) appears to be very cool. No red band flux is available, but in the J band (1200 nm) it is about 16 times brighter than in the G band (464 nm). So the two red filters (H-a and S II) will pass a lot more light than the green filter (O III). I'm not sure what the final mapping used was, but looking at the histogram I'd guess that the blue and green channels are filled from the O III data and the red channel is filled from the H-a and S II data. Which would explain why the star is so red.
Would that also explain why the W-R star - which is not cool at all! - is so red, as well as the bright - foreground? - star in the lower right?
The foreground star, 2MASS J07190568-1315389 is certainly a cool star that is much brighter at the longer wavelengths. So it would explain that.

The W-R star, 2MASS J07182912-1313015 is brighter in the IR than the visible, which may have to do with the effects of dust. (Thermal dust emission is common in W-R nebulas; the presence of dust could cause reddening in optical wavelengths.) Its R and G flux is similar, but maybe twice as much R signal is present because that's coming from two filters, while the green is coming from just one. So much depends on the processing, and the final colors we get from narrowband data can be quite variable.

Re: APOD: Thor's Helmet (2024 Jan 09)

by johnnydeep » Tue Jan 09, 2024 6:49 pm

Chris Peterson wrote: ↑Tue Jan 09, 2024 6:41 pm
RandyM wrote: ↑Tue Jan 09, 2024 6:12 pm Thanks for APOD! Why is one star, located above the helmet at the 1 o'clock position and within the wings, so red?
Well, that star, 2MASS J07181340-1315288 (Gaia DR3 3032940260440588544) appears to be very cool. No red band flux is available, but in the J band (1200 nm) it is about 16 times brighter than in the G band (464 nm). So the two red filters (H-a and S II) will pass a lot more light than the green filter (O III). I'm not sure what the final mapping used was, but looking at the histogram I'd guess that the blue and green channels are filled from the O III data and the red channel is filled from the H-a and S II data. Which would explain why the star is so red.
Would that also explain why the W-R star - which is not cool at all! - is so red, as well as the bright - foreground? - star in the lower right?

Top