APOD: The Doubly Warped World of Binary... (2021 Apr 16)

Post a reply


This question is a means of preventing automated form submissions by spambots.
Smilies
:D :) :ssmile: :( :o :shock: :? 8-) :lol2: :x :P :oops: :cry: :evil: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
View more smilies

BBCode is ON
[img] is ON
[url] is ON
Smilies are ON

Topic review
   

Expand view Topic review: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

APOD VIDEO: The Doubly Warped World of Binary Black Holes (2021 Apr 16th)

by CarmeloLabadie » Thu Jul 15, 2021 6:58 am

Mergers of Black Holes with Neutron Stars

by neufer » Tue Jun 29, 2021 2:25 pm

https://www.ligo.caltech.edu/news/ligo20210629 wrote:
LIGO-Virgo-KAGRA Finds Elusive Mergers of Black Holes with Neutron Stars
LIGO Caltech: News Release • June 29, 2021

<<For the first time, researchers have confirmed the detection of a collision between a black hole and a neutron star. In fact, the scientists detected not one but two such events occurring just 10 days apart in January 2020. The extreme events made splashes in space that sent gravitational waves rippling across at least 900 million light-years to reach Earth. In each case, the neutron star was likely swallowed whole by its black hole partner.

The gravitational waves were detected by the National Science Foundation's (NSF's) Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States and by the Virgo detector in Italy. The KAGRA detector in Japan, joined the LIGO-Virgo network in 2020, but was not online during these detections.

The first merger, detected on January 5, 2020, involved a black hole about 9 times the mass of our sun, or 9 solar masses, and a 1.9-solar-mass neutron star. The second merger was detected on January 15, and involved a 6-solar-mass black hole and a 1.5-solar-mass neutron star. The results were published today, June 29, in The Astrophysical Journal Letters.

"With this new discovery of neutron star- black hole mergers outside our galaxy, we have found the missing type of binary. We can finally begin to understand how many of these systems exist, how often they merge, and why we have not yet seen examples in the Milky Way," says Astrid Lamberts, a researcher at Observatoire de la Côte d'Azur, in Nice, France.

The first of the two events, GW200105, was observed by the LIGO Livingston and Virgo detectors. It produced a strong signal in the LIGO detector but had a small signal-to-noise in the Virgo detector. The other LIGO detector, located in Hanford, Washington, was temporarily offline. Given the nature of the gravitational waves, the team inferred that the signal was caused by a black hole colliding with a 1.9-solar-mass compact object, later identified as a neutron star. This merger took place 900 million light-years away.

"Even though we see a strong signal in only one detector, we conclude that it is real and not just detector noise. It passes all our stringent quality checks and sticks out from all noise events we see in the third observing run," says Harald Pfeiffer, group leader in the Astrophysical and Cosmological Relativity department at Max Planck Institute for Gravitational Physics (AEI) in Potsdam, Germany.

Because the signal was strong in only one detector, the location of the merger on the sky remains uncertain, lying somewhere in an area that is 34,000 times the size of a full moon.

"While the gravitational waves alone don't reveal the structure of the lighter object, we can infer its maximum mass. By combining this information with theoretical predictions of expected neutron star masses in such a binary system, we conclude that a neutron star is the most likely explanation," says Bhooshan Gadre, a postdoctoral researcher at the AEI.

The second event, GW200115, was detected by both LIGO detectors and the Virgo detector. GW200115 comes from the merger of a black hole with a 1.5-solar mass neutron star that took place roughly 1 billion light-years from Earth. Using information from all three instruments, scientists were better able to narrow down the part of the sky where this event occurred. Nevertheless, the localized area is almost 3,000 times the size of a full moon.

Astronomers were alerted to both events soon after they were detected in gravitational waves and subsequently searched the skies for associated flashes of light. None were found. This is not surprising due to the very large distance to these mergers, which means that any light coming from them, no matter what the wavelength, would be very dim and hard to detect with even the most powerful telescopes. Additionally, the mergers likely did not give off a light show in any case because their black holes were big enough that they swallowed the neutron stars whole.

"These were not events where the black holes munched on the neutron stars like the cookie monster and flung bits and pieces about. That 'flinging about' is what would produce light, and we don't think that happened in these cases," says Patrick Brady, a professor at University of Wisconsin-Milwaukee and Spokesperson of the LIGO Scientific Collaboration.

Previously, the LIGO-Virgo network found two other candidate neutron star-black hole mergers. One event called GW190814, detected August 14, 2019, involved a collision of a 23-solar-mass black hole with an object of about 2.6 solar masses, which could be either the heaviest known neutron star or the lightest known black hole. Another candidate event, called GW190426, and detected on April 26, 2019, was thought to possibly be a neutron star-black hole merger, but could also simply be the result of detector noise.

Having confidently observed two examples of gravitational waves from black holes merging with neutron stars, researchers now estimate that, within one billion light-years of Earth, roughly one such merger happens per month.

"The detector groups at LIGO, Virgo, and KAGRA are improving their detectors in preparation for the next observing run scheduled to begin in summer 2022," says Brady. "With the improved sensitivity, we hope to detect merger waves up to once per day and to better measure the properties of black holes and super-dense matter that makes up neutron stars.">>

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by johnnydeep » Mon Apr 19, 2021 2:43 pm

Thanks for that, alter-ego! I'll have to read it a few more times before I can claim to understand it.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by alter-ego » Mon Apr 19, 2021 2:59 am

johnnydeep wrote: Fri Apr 16, 2021 4:55 pm There are at least two statements here I don't quite understand:

1. "...material orbiting smaller black holes experiences stronger gravitational effects that produce higher temperatures."

Is this due to the tidal effects being greater for smaller black holes? Meaning that the gravity gradient is steeper around a smaller black hole and thereby tears at orbiting matter more greatly?
Yes, although I did not see direct reference to "tidal force". Heating is caused by gas migrating from outer radii to inner radii (loss of angular momentum), and the released energy over a small change in orbital radius (dr) is expressed as as the derivative of gravitational potential energy wrt radius. Only considering black-body accretion disk luminosity (i.e. no jets), the temperature proportionality to BH mass, M, can be found. Bottom line: Temperature increases with larger velocity change and larger accretion rate:
Accretion Disk Lecture wrote: Suppose that as each fluid element moves inward that it releases its energy locally, and that its energy is all gravitational. How much energy would an element of mass, m, release in going from a circular orbit at radius r + dr to one at radius r?
Gravitational potential energy is Eg = -GMm/2r, so the energy released is GMmdr/2r2.
...
However, let us now focus on just the radial dependence, writing [release of gravitational potential energy over dr] dEg ∼ GMmdr/r2. That means that the luminosity of this annulus, for an accretion rate [m → dm/dt], is dL ∼ GM[dm/dt]dr/r2
and assuming black-body radiation, the temperature can be related to Luminosity:
Accretion Disk Lecture wrote:For a blackbody, L = σAT4. The area of the annulus is 2πrdr, and since dL ∼ M[dm/dt]dr/r2 we have T4 ∼ M[dm/dt]/r3, or T ∼ {M[dm/dt]/r3}1/4
Rewriting the parameters in terms of the BH mass, M, and assuming a stead-state accretion rate (dm/dt =constant)then T ∝ M−1/4.
Accretion Disk Lecture wrote: This shows that as black holes get bigger, emission from their accretion disks get cooler, all else being equal. For example, a stellar-mass black hole accreting at nearly the Eddington rate has an inner disk temperature near 107 K, but a supermassive 108 M☉ black hole accreting near Eddington has only a 105 K temperature.
FYI: Given the conditions of no jets, Eddington accretion rate yields the Eddington luminosity = Maximum luminosity a body (such as a star) can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. When there are jets, the BH luminosity can exceed the Eddington limit because that radiation does not encounter the accretion disk, therefore it does not contribute to hydrostatic equilibrium.
johnnydeep wrote: Fri Apr 16, 2021 4:55 pm 2. "...relativity causes the black holes to appear smaller and brighter as they approach the camera and larger and fainter as they recede."

This I don't get at all. Does it matter which BH is closer to the camera and/or whether they are eclipsing each other or not? And either way, I still don't get it :)
Though I don't necessarily question Art's description about brightness, I don't think it clearly addresses your question.
First, the question is about relativistic aberration, and second, the visual aspects mentioned can apply to single, moving BH. Relativistic Aberration not only acts differentially on the accretion disk, but also acts on the entire black hole (the photon ring and the accretion disk). In this visualization, there are two BHs orbiting each other which leads to a periodic, relativistic aberration. To see the largest aberration, the observer needs view the orbital plane edge on, and when the BHs are at maximum separation. There, one recedes when the other advances directly toward the observer; the velocity difference is maximum so the apparent size differences are a maximum. The noted aberration does not occur when they are eclipsing, or when viewed from above. For the latter two cases, the orbital velocities are perpendicular to the line of sight.

Referring the first APOD link and the visualization:
Light rays from accretion disks wrote:The visualization also shows a more subtle phenomenon called relativistic aberration. The black holes appear smaller as they approach the viewer and larger when moving away.
Relativistic Aberration - Orbiting Black Holes.jpg
This effect doesn't rely on gravity bending light. It's behavior is rooted in both Newtonian physics (stellar aberration, velocity << c), and accurately described in Special Relativity. For a moving source, it comes down to the changing propagating cone angles - narrowing toward the observer, widening away from the observer. The following SR visualizations demonstrate this for a moving observer. Keep in mind the moving observer's narrowing field of view demonstrates the same behavior as a narrowing light-propagation cone-angle of relativistic star moving towards a stationary observer. I.e. the observers FoV doesn't change, but the apparent size of the star is brighter and smaller.

The first is a 6-min video demonstrating all SR doppler and aberration effects. The brightening and narrowing sky FoV is shown around 2.5 minutes into the visualization.
Click to play embedded YouTube video.
 
The second shows how a 360°FoV collapses (quantifying the view vs velocity).
Click to play embedded YouTube video.
 
This one is for an observer falling into a black hole. When his visible aberrated world blinks out, the screen goes black.
I'll admit, I find this a bit unsettling.
Click to play embedded YouTube video.
 
Hope all this helps.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by neufer » Sun Apr 18, 2021 6:45 pm

johnnydeep wrote: Sun Apr 18, 2021 3:17 pm
neufer wrote: Sat Apr 17, 2021 6:15 pm
johnnydeep wrote: Fri Apr 16, 2021 4:55 pm
2. "...relativity causes the black holes to appear smaller and brighter as they approach the camera and larger and fainter as they recede."

This I don't get at all. Does it matter which BH is closer to the camera and/or whether they are eclipsing each other or not? And either way, I still don't get it :)
Light from the most distance edge of an approaching accretion disk has to catch up with the black hole in order to pass it (both above & below) and, hence, requires minimal bending at a distance impact parameter for forward scattering. Minimal bending would also minimize the brightness of an optically thick nearly horizontal accretion disk even if the radiation wasn't spread out over a larger impact parameter.

Light from the most distance edge of a receding accretion disk has to avoid an oncoming black hole in order to pass it (both above & below) and, hence, requires maximal bending at a close impact parameter for forward scattering. Maximal bending would also maximize the brightness of an optically thick nearly horizontal accretion disk even if the radiation wasn't concentrated within a smaller impact parameter.
Thanks for trying, but that didn't help me, even after sleeping on it :) What's an "impact parameter"?
Think of it as a "periholean" for the light rays that actually make it to our telescopes.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by johnnydeep » Sun Apr 18, 2021 3:17 pm

neufer wrote: Sat Apr 17, 2021 6:15 pm
johnnydeep wrote: Fri Apr 16, 2021 4:55 pm There are at least two statements here I don't quite understand:

1. "...material orbiting smaller black holes experiences stronger gravitational effects that produce higher temperatures."

Is this due to the tidal effects being greater for smaller black holes? Meaning that the gravity gradient is steeper around a smaller black hole and thereby tears at orbiting matter more greatly?
  • Presumably. Tidal effects scale as M/r3 or 1/R2.
johnnydeep wrote: Fri Apr 16, 2021 4:55 pm
2. "...relativity causes the black holes to appear smaller and brighter as they approach the camera and larger and fainter as they recede."

This I don't get at all. Does it matter which BH is closer to the camera and/or whether they are eclipsing each other or not? And either way, I still don't get it :)
Light from the most distance edge of an approaching accretion disk has to catch up with the black hole in order to pass it (both above & below) and, hence, requires minimal bending at a distance impact parameter for forward scattering. Minimal bending would also minimize the brightness of an optically thick nearly horizontal accretion disk even if the radiation wasn't spread out over a larger impact parameter.

Light from the most distance edge of a receding accretion disk has to avoid an oncoming black hole in order to pass it (both above & below) and, hence, requires maximal bending at a close impact parameter for forward scattering. Maximal bending would also maximize the brightness of an optically thick nearly horizontal accretion disk even if the radiation wasn't concentrated within a smaller impact parameter.
Thanks for trying, but that didn't help me, even after sleeping on it :) What's an "impact parameter"?

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by neufer » Sat Apr 17, 2021 6:15 pm

johnnydeep wrote: Fri Apr 16, 2021 4:55 pm There are at least two statements here I don't quite understand:

1. "...material orbiting smaller black holes experiences stronger gravitational effects that produce higher temperatures."

Is this due to the tidal effects being greater for smaller black holes? Meaning that the gravity gradient is steeper around a smaller black hole and thereby tears at orbiting matter more greatly?
  • Presumably. Tidal effects scale as M/r3 or 1/R2.
johnnydeep wrote: Fri Apr 16, 2021 4:55 pm
2. "...relativity causes the black holes to appear smaller and brighter as they approach the camera and larger and fainter as they recede."

This I don't get at all. Does it matter which BH is closer to the camera and/or whether they are eclipsing each other or not? And either way, I still don't get it :)
Light from the most distance edge of an approaching accretion disk has to catch up with the black hole in order to pass it (both above & below) and, hence, requires minimal bending at a distance impact parameter for forward scattering. Minimal bending would also minimize the brightness of an optically thick nearly horizontal accretion disk even if the radiation wasn't spread out over a larger impact parameter.

Light from the most distance edge of a receding accretion disk has to avoid an oncoming black hole in order to pass it (both above & below) and, hence, requires maximal bending at a close impact parameter for forward scattering. Maximal bending would also maximize the brightness of an optically thick nearly horizontal accretion disk even if the radiation wasn't concentrated within a smaller impact parameter.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by neufer » Fri Apr 16, 2021 5:03 pm

Chris Peterson wrote: Fri Apr 16, 2021 3:31 pm
Ann wrote: Fri Apr 16, 2021 3:04 pm
Chris Peterson wrote: Fri Apr 16, 2021 1:06 pm
They really don't gobble up much. Even truly massive black holes like the one in M87, massing more than a billion suns and active enough to have jets, still take a decade just to suck in one additional solar mass. And the overwhelming majority of black holes pretty much suck in nothing at all.
Like the Milky Way's own supermassive black hole, I think.

Not that it couldn't get hungry in the future, when the Milky Way is getting too close for comfort to the Andromeda galaxy.
Hungrier, maybe. But it will still not absorb very much. How could it?

Its size does not exceed that of Neptune's orbit- a volume so small that any collisions with passing stars is extremely unlikely, even in the densest parts of the collision zones.
"[Recent] observations of the star S14 showed the mass of Milky Way's Sgr A* to be about 4.1 million solar masses within a volume with radius no larger than 45 AU or about 6.7 billion kilometres. S175 passed within a similar distance. For comparison, the Schwarzschild radius is 0.08 AU."

The Schwarzschild radius of Milky Way's Sgr A* is only 12.25 million kilometers.

(As of its last perihelion on 17 January 2021,
the Parker Solar Probe's closest approach to the Sun was at 13.5 million kilometers.)

However, the Andromeda Galaxy is thought to harbor two massive
black holes of radii 0.8 AU & 3.2 AU orbiting about 4.9 ly apart.


(The Schwarzschild radius of Messier 87's black hole is ~125 AU.
Voyager 1&2 are currently at 152.5 AU & 126.8 AU from the Sun.)
https://en.wikipedia.org/wiki/Andromeda_Galaxy#Nucleus wrote: <<The Andromeda Galaxy is known to harbor a dense and compact star cluster at its very center. In a large telescope it creates a visual impression of a star embedded in the more diffuse surrounding bulge. In 1991, the Hubble Space Telescope was used to image the Andromeda Galaxy's inner nucleus. The nucleus consists of two concentrations separated by 1.5 pc (4.9 ly). The brighter concentration, designated as P1, is offset from the center of the galaxy. The dimmer concentration, P2, falls at the true center of the galaxy and contains a black hole measured at 3–5 × 107 M in 1993, and at 1.1–2.3 × 108 M in 2005. The velocity dispersion of material around it is measured to be ≈ 160 km/s.

Chandra X-ray telescope image of the center of the Andromeda Galaxy. A number of X-ray sources, likely X-ray binary stars, within the galaxy's central region appear as yellowish dots. The blue source at the center is at the position of the supermassive black hole.

It has been proposed that the observed double nucleus could be explained if P1 is the projection of a disk of stars in an eccentric orbit around the central black hole. The eccentricity is such that stars linger at the orbital apocenter, creating a concentration of stars. P2 also contains a compact disk of hot, spectral-class A stars. The A stars are not evident in redder filters, but in blue and ultraviolet light they dominate the nucleus, causing P2 to appear more prominent than P1.

While at the initial time of its discovery it was hypothesized that the brighter portion of the double nucleus is the remnant of a small galaxy "cannibalized" by the Andromeda Galaxy, this is no longer considered a viable explanation, largely because such a nucleus would have an exceedingly short lifetime due to tidal disruption by the central black hole. While this could be partially resolved if P1 had its own black hole to stabilize it, the distribution of stars in P1 does not suggest that there is a black hole at its center.>>
https://en.wikipedia.org/wiki/Sagittarius_A* wrote:
<<Since the 1980s it has been evident that the central component of Sgr A* is likely a black hole. Infrared and submillimetre spectroscopy by a Berkeley team involving Nobel Laureate Charles H. Townes and future Nobelist Reinhard Genzel showed that the mass must be very tightly concentrated, possibly a point mass.

On October 16, 2002, an international team led by Reinhard Genzel of the Max Planck Institute for Extraterrestrial Physics reported the observation of the motion of the star S2 near Sagittarius A* throughout a period of ten years. According to the team's analysis, the data ruled out the possibility that Sgr A* contains a cluster of dark stellar objects or a mass of degenerate fermions, strengthening the evidence for a massive black hole. The observations of S2 used near-infrared (NIR) interferometry (in the K-band, i.e. 2.2 μm) because of reduced interstellar extinction in this band. SiO masers were used to align NIR images with radio observations, as they can be observed in both NIR and radio bands. The rapid motion of S2 (and other nearby stars) easily stood out against slower-moving stars along the line-of-sight so these could be subtracted from the images.

The VLBI radio observations of Sagittarius A* could also be aligned centrally with the NIR images, so the focus of S2's elliptical orbit was found to coincide with the position of Sagittarius A*. From examining the Keplerian orbit of S2, they determined the mass of Sagittarius A* to be 2.6±0.2 million solar masses, confined in a volume with a radius no more than 17 light-hours (120 AU). Later observations of the star S14 showed the mass of the object to be about 4.1 million solar masses within a volume with radius no larger than 6.25 light-hours (45 AU) or about 6.7 billion kilometres. S175 passed within a similar distance. For comparison, the Schwarzschild radius is 0.08 AU. They also determined the distance from Earth to the Galactic Center (the rotational center of the Milky Way), which is important in calibrating astronomical distance scales, as (8.0±0.6) kiloparsecs. In November 2004 a team of astronomers reported the discovery of a potential intermediate-mass black hole, referred to as GCIRS 13E, orbiting 3 light-years from Sagittarius A*. This black hole of 1,300 solar masses is within a cluster of seven stars. This observation may add support to the idea that supermassive black holes grow by absorbing nearby smaller black holes and stars.

After monitoring stellar orbits around Sagittarius A* for 16 years, Gillessen et al. estimated the object's mass at 4.31±0.38 million solar masses. The result was announced in 2008 and published in The Astrophysical Journal in 2009. Reinhard Genzel, team leader of the research, said the study has delivered "what is now considered to be the best empirical evidence that supermassive black holes do really exist. The stellar orbits in the Galactic Center show that the central mass concentration of four million solar masses must be a black hole, beyond any reasonable doubt."

On January 5, 2015, NASA reported observing an X-ray flare 400 times brighter than usual, a record-breaker, from Sgr A*. The unusual event may have been caused by the breaking apart of an asteroid falling into the black hole or by the entanglement of magnetic field lines within gas flowing into Sgr A*, according to astronomers. On 13 May 2019, astronomers using the Keck Observatory witnessed a sudden brightening of Sgr A*, which became 75 times brighter than usual, suggesting that the supermassive black hole may have encountered another object.>>

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by johnnydeep » Fri Apr 16, 2021 4:55 pm

There are at least two statements here I don't quite understand:

1. "...material orbiting smaller black holes experiences stronger gravitational effects that produce higher temperatures."

Is this due to the tidal effects being greater for smaller black holes? Meaning that the gravity gradient is steeper around a smaller black hole and thereby tears at orbiting matter more greatly?

2. "...relativity causes the black holes to appear smaller and brighter as they approach the camera and larger and fainter as they recede."

This I don't get at all. Does it matter which BH is closer to the camera and/or whether they are eclipsing each other or not? And either way, I still don't get it :)

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by Ann » Fri Apr 16, 2021 4:27 pm

Chris Peterson wrote: Fri Apr 16, 2021 3:31 pm
Ann wrote: Fri Apr 16, 2021 3:04 pm
Chris Peterson wrote: Fri Apr 16, 2021 1:06 pm

They really don't gobble up much. Even truly massive black holes like the one in M87, massing more than a billion suns and active enough to have jets, still take a decade just to suck in one additional solar mass. And the overwhelming majority of black holes pretty much suck in nothing at all.
Like the Milky Way's own supermassive black hole, I think.

Not that it couldn't get hungry in the future, when the Milky Way is getting too close for comfort to the Andromeda galaxy.

Ann
Hungrier, maybe. But it will still not absorb very much. How could it? Its size does not exceed that of Neptune's orbit- a volume so small that any collisions with passing stars is extremely unlikely, even in the densest parts of the collision zones.
Point taken, but what about Andromeda's black hole? It's a lot bigger than out own, and our two galaxies are set to merge in the future.

Ann

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by neufer » Fri Apr 16, 2021 3:47 pm

https://en.wikipedia.org/wiki/Brodie_helmet wrote:
Click to play embedded YouTube video.

<<The Brodie helmet is a steel combat helmet designed and patented in London in 1915 by John Leopold Brodie. A modified form of it became the Helmet, Steel, Mark I in Britain and the M1917 Helmet in the U.S. Colloquially, it was called the shrapnel helmet, battle bowler, Tommy helmet, tin hat, and in the United States the doughboy helmet. It was also known as the dishpan hat, tin pan hat, washbasin, battle bowler (when worn by officers), and Kelly helmet. The German Army called it the Salatschüssel (salad bowl).

At the outbreak of World War I, none of the combatants provided steel helmets to their troops. Soldiers of most nations went into battle wearing cloth, felt, or leather headgear that offered no protection from modern weapons. The huge number of lethal head wounds that modern artillery weapons inflicted upon the French Army led them to introduce the first modern steel helmets in the summer of 1915. The first French helmets were bowl-shaped steel "skullcaps" worn under the cloth caps. These rudimentary helmets were soon replaced by the Model 1915 Adrian helmet, designed by August-Louis Adrian. The idea was later adopted by most other combatant nations.

At about the same time, the British War Office had seen a similar need for steel helmets. The War Office Invention Department was ordered to evaluate the French design. They decided that it was not strong enough and too complex to be swiftly manufactured. British industry was not geared up to an all-out effort of war production in the early days of World War I, which also led to the shell shortage of 1915.

John Leopold Brodie (1873–1945), born Leopold Janno Braude in Riga, was an entrepreneur and inventor who had made a fortune in the gold and diamond mines of South Africa, but was working in London at that time. A design patented by him in August 1915 offered advantages over the French helmet. It was constructed in one piece that could be pressed from a single thick sheet of steel, giving it added strength and making it simple to manufacture. Brodie's patent deals mainly with the innovative lining arrangements; an engineer called Alfred Bates of the firm of Willis & Bates of Halifax, Yorkshire, manufacturer of Vapalux paraffin pressure lamps, claimed that he was asked by the War Office to find a method of manufacturing an anti-shrapnel helmet and that it was he who had devised the basic shape of the steel shell. Aside from some newspaper articles, there is nothing to substantiate

Brodie's design resembled the medieval infantry kettle hat or chapel-de-fer, unlike the German Stahlhelm, which resembled the medieval sallet. The Brodie had a shallow circular crown with a wide brim around the edge, a leather liner and a leather chinstrap. The helmet's "soup bowl" shape was designed to protect the wearer's head and shoulders from shrapnel shell projectiles bursting from above the trenches. The design allowed the use of relatively thick steel that could be formed in a single pressing while maintaining the helmet's thickness. This made it more resistant to projectiles but it offered less protection to the lower head and neck than other helmets.>>

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by Chris Peterson » Fri Apr 16, 2021 3:31 pm

Ann wrote: Fri Apr 16, 2021 3:04 pm
Chris Peterson wrote: Fri Apr 16, 2021 1:06 pm
orin stepanek wrote: Fri Apr 16, 2021 12:38 pm I don't think I like black holes! But I guess they are like a land fill, gobbling up all the waste & then some! :shock:
They really don't gobble up much. Even truly massive black holes like the one in M87, massing more than a billion suns and active enough to have jets, still take a decade just to suck in one additional solar mass. And the overwhelming majority of black holes pretty much suck in nothing at all.
Like the Milky Way's own supermassive black hole, I think.

Not that it couldn't get hungry in the future, when the Milky Way is getting too close for comfort to the Andromeda galaxy.

Ann
Hungrier, maybe. But it will still not absorb very much. How could it? Its size does not exceed that of Neptune's orbit- a volume so small that any collisions with passing stars is extremely unlikely, even in the densest parts of the collision zones.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by Ann » Fri Apr 16, 2021 3:04 pm

Chris Peterson wrote: Fri Apr 16, 2021 1:06 pm
orin stepanek wrote: Fri Apr 16, 2021 12:38 pm I don't think I like black holes! But I guess they are like a land fill, gobbling up all the waste & then some! :shock:
They really don't gobble up much. Even truly massive black holes like the one in M87, massing more than a billion suns and active enough to have jets, still take a decade just to suck in one additional solar mass. And the overwhelming majority of black holes pretty much suck in nothing at all.
Like the Milky Way's own supermassive black hole, I think.

Not that it couldn't get hungry in the future, when the Milky Way is getting too close for comfort to the Andromeda galaxy.

Ann

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by E Fish » Fri Apr 16, 2021 2:44 pm

That's an excellent video, and I appreciate that they anticipated my own questions about the distorted secondary image I was noticing during the orbit. I think I've found another video to show my astronomy class. :)

The first book I read on black holes was back in the 90s in my high school library. It was the only one they had and it was written back in the 60s. So it took me a while to get up to date on what black holes were and the fact that we've detected them. :) But I've long been fascinated by them and I love introducing students to them because it's a way to get their brains a little stretched.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by Chris Peterson » Fri Apr 16, 2021 1:51 pm

sillyworm 2 wrote: Fri Apr 16, 2021 1:42 pm I find black holes fascinating .Basically the extreme biproduct of gravity, a process we experience daily,and as far as I can tell,we still don't know much about it.
Given the number of different lines of evidence that continue to be found and which continue to support GR, I'd say we know almost everything about gravity. The only hole is how (if?) it is connected to the other forces/fields, all of which are described by QM.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by sillyworm 2 » Fri Apr 16, 2021 1:42 pm

I find black holes fascinating .Basically the extreme biproduct of gravity, a process we experience daily,and as far as I can tell,we still don't know much about it.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by orin stepanek » Fri Apr 16, 2021 1:26 pm

Chris Peterson wrote: Fri Apr 16, 2021 1:06 pm
orin stepanek wrote: Fri Apr 16, 2021 12:38 pm I don't think I like black holes! But I guess they are like a land fill, gobbling up all the waste & then some! :shock:
They really don't gobble up much. Even truly massive black holes like the one in M87, massing more than a billion suns and active enough to have jets, still take a decade just to suck in one additional solar mass. And the overwhelming majority of black holes pretty much suck in nothing at all.

Thanks Chris! 8-)

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by Chris Peterson » Fri Apr 16, 2021 1:10 pm

shaileshs wrote: Fri Apr 16, 2021 5:06 am Sorry to say, today's APOD content might be "super cool and/or extraordinarily amazing" for some but for me (a lay person), honestly, I am not enjoying it much. Seems some *random imagination of super complex things we really don't know much about*.. And the music (background score) makes it even worse.. arbitrary mysterious sounds and patterns as if they are trying to narrate/convey some meaning and carry some importance.. Feels made for some Sci-Fi hollywood movie.. Sorry, I'm not questioning anyone's interest/knowledge/beliefs/feelings as such, I don't want to offend anyone, just expressing my personal thoughts.
Except that this is a subject that we know a LOT about. The physics of the actual black hole itself, the singularity or tiny particle that lies inside the event horizon is not well understood. But outside of that? Black holes are weird with respect to our intuition, but they are not poorly understood, and their effects on the surrounding spacetime follow directly from GR and are observationally verified with multiple lines of evidence.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by De58te » Fri Apr 16, 2021 1:07 pm

alter-ego wrote: Fri Apr 16, 2021 4:42 am You can't touch this.
There is the APOD understatement of the year. lol, So far no human has even figured out how to touch the surface of our own sun yet - and live!

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by Chris Peterson » Fri Apr 16, 2021 1:06 pm

orin stepanek wrote: Fri Apr 16, 2021 12:38 pm I don't think I like black holes! But I guess they are like a land fill, gobbling up all the waste & then some! :shock:
They really don't gobble up much. Even truly massive black holes like the one in M87, massing more than a billion suns and active enough to have jets, still take a decade just to suck in one additional solar mass. And the overwhelming majority of black holes pretty much suck in nothing at all.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by orin stepanek » Fri Apr 16, 2021 12:38 pm

I don't think I like black holes! But I guess they are like a land fill, gobbling up all the waste & then some! :shock:

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by Knight of Clear Skies » Fri Apr 16, 2021 10:17 am

rj rl wrote: Fri Apr 16, 2021 9:15 am no more random than any image of atomic nucleus you've ever seen. And while black holes are certainly complex, they're not complex to the point where we absolutely can't even imagine what one would look like: we can and that's roughly what you see in the APOD. An actual image of a black hole was produced just a couple years ago remember, and it looked pretty close to what models predicted.
Yes, we have direct evidence that binary black holes exist and that we can calculate the visual effects of their gravitational lensing. I think it's good that APOD tries to cover a variety of subjects.
Merging masses: chart showing the ten black-hole mergers (top) and one neutron-star merger (bottom). Also shown are black holes and neutron stars observed using electromagnetic (EM) radiation. (Courtesy: LIGO-Virgo/Frank Elavsky/Northwestern)

I agree the music was distracting but my mute button took care of that.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by rj rl » Fri Apr 16, 2021 9:15 am

shaileshs wrote: Fri Apr 16, 2021 5:06 am *random imagination of super complex things we really don't know much about*
no more random than any image of atomic nucleus you've ever seen. And while black holes are certainly complex, they're not complex to the point where we absolutely can't even imagine what one would look like: we can and that's roughly what you see in the APOD. An actual image of a black hole was produced just a couple years ago remember, and it looked pretty close to what models predicted.

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by JohnD » Fri Apr 16, 2021 8:52 am

Thank you, APOD, and thnak you, NASA!
A recent BH simulation video on the APOD (https://apod.nasa.gov/apod/ap210411.html ) puzzled me by the apparent duplication of the BH's event horizons, which members here explained to me were caused by the space-time distortion in that part of space.
If I had seen this video first, I would not have needed to ask the question! It makes that distortion so clear, even to someone who has only the vaugest notion of the "super complex things we really don't know much about."!
The music, shaileshs, is very personal. It could have had the Blue Danube, if that wasn't a hackneyed trope since 2001!
John

Re: APOD: The Doubly Warped World of Binary... (2021 Apr 16)

by shaileshs » Fri Apr 16, 2021 5:06 am

Sorry to say, today's APOD content might be "super cool and/or extraordinarily amazing" for some but for me (a lay person), honestly, I am not enjoying it much. Seems some *random imagination of super complex things we really don't know much about*.. And the music (background score) makes it even worse.. arbitrary mysterious sounds and patterns as if they are trying to narrate/convey some meaning and carry some importance.. Feels made for some Sci-Fi hollywood movie.. Sorry, I'm not questioning anyone's interest/knowledge/beliefs/feelings as such, I don't want to offend anyone, just expressing my personal thoughts.

Top