by Ann » Sun Feb 02, 2020 7:27 pm
KKJdrunkenmonkey wrote: ↑Sun Feb 02, 2020 6:55 pm
Chris Peterson wrote: ↑Sun Feb 02, 2020 2:51 pm
The problem here may not be the graphic at all, but a disconnect between the caption and the graphic. The numbers in the caption did not come from the release text accompanying the graphic. Indeed, the only number offered in the release is that K stars are three times more abundant than G stars- which is consistent with the graphic.
I appreciate your response. However, there is one more number in the release text which you missed: "stars like our Sun represent only about 10% of the Milky Way population."
So, if our sun is 10% of the population, and K stars are three times more abundant, then the graphic is good so far for 40% of the galaxy's population. So... where did the 10 M stars come from? At most it should have been 6 to make 100%.
Regardless of how you look at it nothing seems to line up. The graphic and its accompanying release text do not agree with one another, and whoever wrote the caption appears to have not actually looked at either of those things before plowing ahead with their piece. Not impressed.
According to Wikipedia, G-type main sequence stars make up 7,6% of all main sequence stars in the Milky Way. K-type main sequence stars make up 12.1% of all main sequence stars, and M-type main sequence stars make up 76.45% of all main sequence stars.
F-type main sequence stars make up 3% of the main sequence stars. A-type main sequence stars (like for example Sirius) make up 0.3% of all main sequence stars in the Milky Way. Main sequence B-type stars (like Alkaid, the end star of the handle of the Big Dipper) make up 0.13% of all main sequence stars. Main sequence O-type stars, like 10 Lacertae, make up ~0.00003% of all main sequence stars in the Milky Way.
Note that not all G-type main sequence stars are going to resemble the Sun. The G-type classification includes stars from spectral class G0 to spectral class G9, and since the Sun is a G2V-type star, it seems likely that the majority of G-type stars will be somewhat cooler and dimmer than the Sun.
Not all stars are main sequence stars. A non-negligible population is made up of white dwarfs. Another type of star that is numerous enough to be taken into account is the modest red giant stars like Pollux or Dubhe.
Note that the figures are not exact, because we can't know these numbers for sure. But we do have a very reasonable idea.
Ann
[quote=KKJdrunkenmonkey post_id=299262 time=1580669748 user_id=145016]
[quote="Chris Peterson" post_id=299251 time=1580655085 user_id=117706]
The problem here may not be the graphic at all, but a disconnect between the caption and the graphic. The numbers in the caption did not come from the release text accompanying the graphic. Indeed, the only number offered in the release is that K stars are three times more abundant than G stars- which is consistent with the graphic.
[/quote]
I appreciate your response. However, there is one more number in the release text which you missed: "stars like our Sun represent only about 10% of the Milky Way population."
So, if our sun is 10% of the population, and K stars are three times more abundant, then the graphic is good so far for 40% of the galaxy's population. So... where did the 10 M stars come from? At most it should have been 6 to make 100%.
Regardless of how you look at it nothing seems to line up. The graphic and its accompanying release text do not agree with one another, and whoever wrote the caption appears to have not actually looked at either of those things before plowing ahead with their piece. Not impressed.
[/quote]
[url=https://en.wikipedia.org/wiki/Stellar_classification#Harvard_spectral_classification]According to Wikipedia[/url], G-type main sequence stars make up 7,6% of all main sequence stars in the Milky Way. K-type main sequence stars make up 12.1% of all main sequence stars, and M-type main sequence stars make up 76.45% of all main sequence stars.
F-type main sequence stars make up 3% of the main sequence stars. A-type main sequence stars (like for example Sirius) make up 0.3% of all main sequence stars in the Milky Way. Main sequence B-type stars (like Alkaid, the end star of the handle of the Big Dipper) make up 0.13% of all main sequence stars. Main sequence O-type stars, like 10 Lacertae, make up ~0.00003% of all main sequence stars in the Milky Way.
Note that not all G-type main sequence stars are going to resemble the Sun. The G-type classification includes stars from spectral class G0 to spectral class G9, and since the Sun is a G2V-type star, it seems likely that the majority of G-type stars will be somewhat cooler and dimmer than the Sun.
Not all stars are main sequence stars. A non-negligible population is made up of white dwarfs. Another type of star that is numerous enough to be taken into account is the modest red giant stars like Pollux or Dubhe.
Note that the figures are not exact, because we can't know these numbers for sure. But we do have a very reasonable idea.
Ann