by neufer » Wed Sep 23, 2015 4:05 pm
Craig Willford wrote:
Would the Zodiacal light appear brighter or dimmer when viewed in the asteroid belt. Do we have any pictures by the Dawn spacecraft orbiting Ceres (or before when it orbited Vesta) where the Sun is just below the horizon? Would it be dimmer because it is farther from the source? Might it be brighter because there were more objects sharing the orbit with the asteroids? I wonder.
- Zodiacal light would appear dimmer when viewed in the asteroid belt
because there are much fewer (though somewhat larger) dust particles:
https://en.wikipedia.org/wiki/Zodiacal_light wrote:
<<Zodiacal light is a faint, roughly triangular, diffuse white glow seen in the night sky that appears to extend up from the vicinity of the Sun along the ecliptic or zodiac. The zodiacal light decreases in intensity with distance from the Sun, but on very dark nights it has been observed in a band completely around the ecliptic. In fact, the zodiacal light covers the entire sky, being responsible in large part for the total skylight on a moonless night. The dust forms a thick pancake-shaped cloud in the Solar System collectively known as the zodiacal cloud, which occupies the same plane as the ecliptic.
The [zodiacal] dust particles are between 10 and 300 micrometres in diameter, most with mass around 150 micrograms.
The source of the dust has been long debated. Until recently, it was thought that the dust originated from the tails of active comets and from collisions between asteroids in the asteroid belt. Peter Jenniskens had previously recognized that many of our meteor showers have no known active comet parent bodies. In a 2010 article in the Astrophysical Journal, David Nesvorny and Peter Jenniskens attributed
over 85 percent of the dust to occasional fragmentations of Jupiter-family comets that are nearly dormant. Jupiter-family comets have orbital periods of less than 20 years and are considered dormant when not actively outgassing, but may do so in the future. Nesvorny and Jenniskens' first fully dynamical model of the zodiacal cloud demonstrated that only if the dust was released in orbits that approach Jupiter, is it stirred up enough to explain the thickness of the zodiacal dust cloud.
The dust in meteoroid streams is much larger, 300 to 10,000 micrometres in diameter, and falls apart in smaller zodiacal dust grains over time. In 2015,
new results published in the magazine "Nature" using the secondary ion dust spectrometer COSIMA on board the ESA/Rosetta orbiter confirmed that the parent bodies of interplanetary dust are most probably Jupiter-family comets such as comet 67P/Churyumov-Gerasimenko.
The Poynting–Robertson effect forces the dust into more circular (but still elongated) orbits, while spiralling slowly into the Sun. Hence a continuous source of new particles is needed to maintain the zodiacal cloud.
Particles can be reduced in size by collisions or by space weathering. When ground down to sizes less than 10 micrometres, the grains are removed from the inner Solar System by solar radiation pressure.
The dust is then replenished by the infall from comets.>>
http://astrobob.areavoices.com/2015/08/31/rosettas-comet-undergoes-dramatic-outburst/ wrote:
<<Two examples of dust grains collected by Rosetta’s COSIMA instrument. Both grains were collected at a distance of 10–20 km from the [67P/Churyumov-Gerasimenko] nucleus. Image (a) shows a dust particle named “Eloi” that crumbled into a rubble pile when collected; (b) shows the dust particle “Arvid” that shattered. The fact that the grains broke apart so easily means their individual parts are not well glued together and probably do not contain any ice. >>
Copyright: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/ BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S -
[quote="Craig Willford"]
Would the Zodiacal light appear brighter or dimmer when viewed in the asteroid belt. Do we have any pictures by the Dawn spacecraft orbiting Ceres (or before when it orbited Vesta) where the Sun is just below the horizon? Would it be dimmer because it is farther from the source? Might it be brighter because there were more objects sharing the orbit with the asteroids? I wonder.[/quote]
[list]Zodiacal light would appear [b][u]dimmer[/u][/b] when viewed in the asteroid belt
[b][color=#FF0000]because there are [u][size=150]much[/size] fewer[/u] (though somewhat larger) dust particles[/color][/b]:[/list]
[quote=" https://en.wikipedia.org/wiki/Zodiacal_light"]
<<Zodiacal light is a faint, roughly triangular, diffuse white glow seen in the night sky that appears to extend up from the vicinity of the Sun along the ecliptic or zodiac. The zodiacal light decreases in intensity with distance from the Sun, but on very dark nights it has been observed in a band completely around the ecliptic. In fact, the zodiacal light covers the entire sky, being responsible in large part for the total skylight on a moonless night. The dust forms a thick pancake-shaped cloud in the Solar System collectively known as the zodiacal cloud, which occupies the same plane as the ecliptic. [b][u][color=#0000FF]The [zodiacal] dust particles are between 10 and 300 micrometres in diameter[/color][/u][/b], most with mass around 150 micrograms.
The source of the dust has been long debated. Until recently, it was thought that the dust originated from the tails of active comets and from collisions between asteroids in the asteroid belt. Peter Jenniskens had previously recognized that many of our meteor showers have no known active comet parent bodies. In a 2010 article in the Astrophysical Journal, David Nesvorny and Peter Jenniskens attributed [b][u][color=#0000FF]over 85 percent of the dust to occasional fragmentations of Jupiter-family comets that are nearly dormant[/color][/u][/b]. Jupiter-family comets have orbital periods of less than 20 years and are considered dormant when not actively outgassing, but may do so in the future. Nesvorny and Jenniskens' first fully dynamical model of the zodiacal cloud demonstrated that only if the dust was released in orbits that approach Jupiter, is it stirred up enough to explain the thickness of the zodiacal dust cloud. [b][u][color=#FF0000]The dust in meteoroid streams is much larger, 300 to 10,000 micrometres in diameter, and falls apart in smaller zodiacal dust grains over time[/color][/u][/b]. In 2015, [b][u][color=#0000FF]new results published in the magazine "Nature" using the secondary ion dust spectrometer COSIMA on board the ESA/Rosetta orbiter confirmed that the parent bodies of interplanetary dust are most probably Jupiter-family comets such as comet 67P/Churyumov-Gerasimenko[/color][/u][/b].
The Poynting–Robertson effect forces the dust into more circular (but still elongated) orbits, while spiralling slowly into the Sun. Hence a continuous source of new particles is needed to maintain the zodiacal cloud.
Particles can be reduced in size by collisions or by space weathering. When ground down to sizes less than 10 micrometres, the grains are removed from the inner Solar System by solar radiation pressure. [b][u][color=#0000FF]The dust is then replenished by the infall from comets.[/color][/u][/b]>>[/quote][quote=" http://astrobob.areavoices.com/2015/08/31/rosettas-comet-undergoes-dramatic-outburst/"]
[float=left][img3=""]http://i0.wp.com/astrobob.areavoices.com/files/2015/08/67P-Fluffy_dust_grains.jpg?resize=864%2C434[/img3][/float] :arrow: <<Two examples of dust grains collected by Rosetta’s COSIMA instrument. Both grains were collected at a distance of 10–20 km from the [67P/Churyumov-Gerasimenko] nucleus. Image (a) shows a dust particle named “Eloi” that crumbled into a rubble pile when collected; (b) shows the dust particle “Arvid” that shattered. The fact that the grains broke apart so easily means their individual parts are not well glued together and probably do not contain any ice. >>
Copyright: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/ BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S - [/quote]