by r.w.b » Thu Dec 22, 2011 12:44 am
Some thoughts, a call for clarification, and perhaps more research, please:
Is the light from the distant galaxy being 'inverted', i.e., light from that part of the distant galaxy which comes from 'above' the lensing galaxy is seen by us as being 'below' the lensing galaxy? Much in the same way as one can invert an image with a glass lens, excepting for the fact that, in the case of a gravitational lens, space itself is being deformed.
Or are we seeing the opposite effect to this; for instance,light from the distant galaxy which is slightly 'above' the lensing galaxy is apparently being moved further 'above' it, from our viewpoint? I.e., the light from the more distant galaxy appears to be 'splayed' apart by the lensing galaxy.
Which of these two is actually happening here, please? Logic tells me that space should be being bent towards the massive foreground galaxy, in which case we are seeing an 'inverted ' image of the lensed galaxy.
In other words, in which directions is space being deformed; towards the lensing galaxy, or way from it?
If it is towards the lens, then this implies that either light is being slowed down,from our viewpoint, as it passes by the large mass, or else time is being speeded up by it. So now we have the perceived fact that light does not have a constant speed as it travels through a vacuum; the more mass there is in a system, the slower light travels through it, from the viewpoint of an outside observer.
Would not that fact add doubt to the accuracy of estimates of distances within the universe? An extreme example of concentrated mass would occur at the Big Bang, or shortly after it. Light would be almost at a standstill, under that condition, and it's velocity would rapidly increase as time progressed.
Or does time come to a near standstill at that point? That would, in the limit, and as I see it, allow for a perceived infinite time for the age of the universe. And, logically, an infinite time for it's future. [Plus no future collapse, then? But that's another line of thought.] Thus pointing to an infinite size for the universe, at least from our point of view. So, any observer, from anywhere in the universe would see exactly the same processes that we are seeing. All could be forgiven for thinking that they are at the centre of the universe.
Either way, we now run into a big problem when we try to estimate accurately the distances and ages of visible objects. Maybe the understanding of perceived red shift of distant objects is on shaky ground, as a result of this light/time distortion?
So what is happening to the Hubble Constant, as we progress further and further away from here, or back in time, or back along the graph of the perceived change in the speed of light due to changes in mass density as the universe developed?
Has anybody else been thinking along these lines? If so, then what are your / their conclusions so far?
Apologies for being completely qualitative here; it's over 30 years since I last studied wave theory and the like, and I've forgotten more than I can remember. But these questions have been niggling me for all of that time, and longer. This is an excellent opportunity to field them.
Some thoughts, a call for clarification, and perhaps more research, please:
Is the light from the distant galaxy being 'inverted', i.e., light from that part of the distant galaxy which comes from 'above' the lensing galaxy is seen by us as being 'below' the lensing galaxy? Much in the same way as one can invert an image with a glass lens, excepting for the fact that, in the case of a gravitational lens, space itself is being deformed.
Or are we seeing the opposite effect to this; for instance,light from the distant galaxy which is slightly 'above' the lensing galaxy is apparently being moved further 'above' it, from our viewpoint? I.e., the light from the more distant galaxy appears to be 'splayed' apart by the lensing galaxy.
Which of these two is actually happening here, please? Logic tells me that space should be being bent towards the massive foreground galaxy, in which case we are seeing an 'inverted ' image of the lensed galaxy.
In other words, in which directions is space being deformed; towards the lensing galaxy, or way from it?
If it is towards the lens, then this implies that either light is being slowed down,from our viewpoint, as it passes by the large mass, or else time is being speeded up by it. So now we have the perceived fact that light does not have a constant speed as it travels through a vacuum; the more mass there is in a system, the slower light travels through it, from the viewpoint of an outside observer.
Would not that fact add doubt to the accuracy of estimates of distances within the universe? An extreme example of concentrated mass would occur at the Big Bang, or shortly after it. Light would be almost at a standstill, under that condition, and it's velocity would rapidly increase as time progressed.
Or does time come to a near standstill at that point? That would, in the limit, and as I see it, allow for a perceived infinite time for the age of the universe. And, logically, an infinite time for it's future. [Plus no future collapse, then? But that's another line of thought.] Thus pointing to an infinite size for the universe, at least from our point of view. So, any observer, from anywhere in the universe would see exactly the same processes that we are seeing. All could be forgiven for thinking that they are at the centre of the universe.
Either way, we now run into a big problem when we try to estimate accurately the distances and ages of visible objects. Maybe the understanding of perceived red shift of distant objects is on shaky ground, as a result of this light/time distortion?
So what is happening to the Hubble Constant, as we progress further and further away from here, or back in time, or back along the graph of the perceived change in the speed of light due to changes in mass density as the universe developed?
Has anybody else been thinking along these lines? If so, then what are your / their conclusions so far?
Apologies for being completely qualitative here; it's over 30 years since I last studied wave theory and the like, and I've forgotten more than I can remember. But these questions have been niggling me for all of that time, and longer. This is an excellent opportunity to field them.