http://en.wikipedia.org/wiki/Kreutz_Sungrazers wrote:
<<The Kreutz Sungrazers are a family of sungrazing comets, characterized by orbits taking them extremely close to the Sun at perihelion. They are believed to be fragments of one large comet that broke up several centuries ago and are named for German astronomer Heinrich Kreutz, who first demonstrated that they were related. Several members of the Kreutz family have become Great Comets, occasionally visible near the Sun in the daytime sky. The most recent of these was Comet Ikeya-Seki in 1965, which may have been one of the brightest comets in the last millennium. Many hundreds of smaller members of the family, some only a few meters across, have been discovered since the launch of the SOHO satellite in 1995. None of these smaller comets survived their perihelion passage.
There are also signs that another cluster of bright Kreutz system comets is on its way to the Sun in future decades, with the earliest objects expected to arrive perhaps as soon as several years from now. During the next few decades, mankind should once again witness spectacular heavenly shows like that in 1965.
The first comet whose orbit had been found to take it extremely close to the Sun was the Great Comet of 1680. This comet was found to have passed just 200,000 km (0.0013 AU) above the sun's surface, equivalent to about half the distance between the Earth and the Moon. It thus became the first known sungrazing comet. Its perihelion distance was just 1.3 solar radii. Astronomers at the time, including Edmond Halley, speculated that this comet was a
return of a bright comet seen close to the Sun in the sky in 1106. 163 years later, the Great Comet of 1843 appeared and also passed extremely close to the Sun. Despite orbital calculations showing that it had a period of several centuries, some astronomers wondered if it was a return of the 1680 comet. A bright comet seen in 1880 was found to be travelling on an almost identical orbit to that of 1843, as was the subsequent Great Comet of 1882. Some astronomers suggested that perhaps they were all one comet, whose orbital period was somehow being drastically shortened at each perihelion passage, perhaps by retardation by some dense material surrounding the Sun.
An alternative suggestion was that the comets were all fragments of an earlier sun-grazing comet. This idea was first proposed in 1880, and its plausibility was amply demonstrated when the Great Comet of 1882 broke up into several fragments after its perihelion passage. In 1888, Heinrich Kreutz published a paper showing that the comets of 1843—C/1843 D1 (Great March comet), 1880—C/1880 C1 (Great southern comet) and 1882—C/1882 R1 (Great September comet) were probably fragments of a giant comet that had broken up several revolutions before. The comet of 1680 proved to be unrelated to this family of comets.
After another Kreutz Sungrazer was seen in 1887 (C/1887 B1—Great southern comet), the next one did not appear until 1945. Two further sungrazers appeared in the 1960s, Comet Pereyra in 1963 and Comet Ikeya-Seki, which became extremely bright in 1965, and broke into three pieces after its perihelion. The appearance of two Kreutz Sungrazers in quick succession inspired further study of the dynamics of the group.
..................................................
A study by Brian Marsden in 1967 was the first attempt to trace back the orbital history of the group to identify the progenitor comet. All known members of the group up until 1965 had almost identical orbital inclinations at about 144°, as well as very similar values for the longitude of perihelion at 280–282°, with a couple of outlying points probably due to uncertain orbital calculations. A greater range of values existed for the argument of perihelion and longitude of the ascending node.
Marsden found that the Kreutz Sungrazers could be split into two groups, with slightly different orbital elements, implying that the family resulted from fragmentations at more than one perihelion. Tracing back the orbits of Ikeya-Seki and the Great Comet of 1882, Marsden found that at their previous perihelion passage, the difference between their orbital elements was of the same order of magnitude as the difference between the elements of the fragments of Ikeya-Seki after it broke up. This meant it was realistic to presume that they were two parts of the same comet which had broken up one orbit ago. By far the best candidate for the progenitor comet was that seen in 1106 (Great Comet of 1106): Ikeya-Seki's derived orbital period gave a previous perihelion almost exactly at the right time, and while the Great Comet of 1882's derived orbit implied a previous perihelion a few decades later, it would only require a small error in the orbital elements to bring it into agreement. The sungrazering comets of 1668, 1689, 1702 and 1945 seem to be closely related to those of 1882 and 1965, although their orbits are not well enough determined to establish whether they broke off from the parent comet in 1106, or the previous perihelion passage before that, some time in the 3–5th centuries AD. This subgroup of comets is known as Subgroup II.
http://upload.wikimedia.org/wikipedia/c ... chy_en.svg
The sungrazering comets observed in 1843 (Great Comet of 1843) and 1963 (Comet Pereyra) seem to be closely related and belong to the subgroup I, although when their orbits are traced back to one previous perihelion, the differences between the orbital elements are still rather large, probably implying that they broke apart from each other one revolution before that. They may not be related to the comet of 1106, but rather a comet that returned about 50 years before that. Subgroup I also includes comets seen in 1695, 1880 (Great Southern Comet of 1880) and in 1887 (Great Southern Comet of 1987), as well as the vast majority of comets detected by SOHO mission.
The distinction between the two sub-groups is thought to imply that they result from two separate parent comets, which themselves were once part of a 'grandparent' comet which fragmented several orbits previously. One possible candidate for the grandparent is a comet observed by Aristotle and Ephorus in 371 BC. Ephorus claimed to have seen this comet break into two. However modern astronomers are skeptical of the claims of Ephorus, because they were not confirmed by other sources. Instead comets that arrived between 3-th and 5-th centuries AD (comets of 214, 426 and 467) are considered as possible progenerators of the Kreutz family. The original comet must certainly have been very large indeed, perhaps as large as 100 km across (for comparison, the nucleus of Comet Hale-Bopp was about 40 km across).
Although its orbit is rather different from those of the main two groups, it is possible that the comet of 1680 is also related to the Kreutz Sungrazers via a fragmentation many orbits ago.
The Kreutz Sungrazers are probably not a unique phenomenon. Studies have shown that for comets with high orbital inclinations and perihelion distances of less than about 2 AU, the cumulative effect of gravitational perturbations tends to result in sungrazing orbits. One study has estimated that Comet Hale-Bopp has about a 15% chance of eventually becoming a sun-grazing comet.
Until recently, it would have been possible for even a very bright member of the Kreutz Sungrazers to pass through the inner solar system unnoticed, if its perihelion occurred between about May and August. At this time of year, as seen from Earth, the comet would approach and recede almost directly behind the sun, and could only become visible extremely close to the sun if it became very bright. Only a remarkable coincidence between the perihelion passage of the Eclipse Comet of 1882 and a total solar eclipse allowed its discovery.>>